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DECOMPOSING THE GROWTH OF TOP WEALTH SHARES

MATTHIEU GOMEZ
Department of Economics, Columbia University

What drives the dynamics of top wealth inequality? To answer this question, I propose an
accounting framework that decomposes the growth of the share of aggregate wealth owned
by a top percentile into three terms: a within term, which is the average wealth growth of
individuals initially in the top percentile relative to the economy; a between term, which
accounts for individuals entering and exiting the top percentile due to changes in their relative
wealth rankings; and a demography term, which accounts for individuals entering or exiting
the top percentile due to death and population growth. I obtain closed-form expressions for
each term in a wide range of random growth models. Evidence from the Forbes 400 list
suggests that the between term accounts for half of the recent rise in top wealth inequality.
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1. INTRODUCTION

What drives the recent rise in top wealth inequality? One widely held view is that it reflects
the high wealth growth of top households relative to the economy (Piketty, 2014). However, this
view neglects the fact that the composition of households at the top of the wealth distribution
has dramatically changed over time: for instance, less than 10% of the households in the 1983
Forbes list of the richest households in the United States were still in the list thirty years later.

In this paper, I study theoretically and empirically the role of these composition changes for
the dynamics of top wealth inequality. I show that a rise top wealth inequality can be driven
by three distinct components: a high growth rate of existing fortunes relative to the economy, a
rapid rise of new fortunes to the top, or a low degree of demographic renewal. I then use data
on top households to measure the relative contribution of each component to the recent rise in
wealth inequality.

The paper proceeds as follows. I first develop an accounting framework that decomposes the
growth of a top percentile wealth share into three terms. The first term (within) is the average
wealth growth of households that are initially in the top percentile relative to the economy; it
captures the extent to which the rich get richer. The second term (between) accounts for changes
in the composition of households in the top percentile due to changes in their relative wealth; it
captures the extent to which new fortunes displace existing ones. The third term (demography)
accounts for composition changes in the top percentile due to death or population growth; it
captures the extent to which the overall population of households changes over time.

I then characterize the result of this decomposition in a wide range of random growth models.
I obtain simple closed-form expressions for the within, between, and demography terms over
short periods of time (i.e., in the continuous-time limit). These analytical expressions provide
a statistical framework to interpret the results of the accounting decomposition. They can also
help researchers to quantify the between and demography terms in the absence of panel data,
which is a common occurrence. In particular, I show that, when wealth follows a diffusion
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process, the between term is given by 1/2(ζ−1)ν2, where ν denotes the idiosyncratic of wealth
around the percentile threshold and where ζ denotes the local Pareto exponent of the wealth
distribution. Similarly, in the absence of inheritance, the demography term is given by −(δ +
η)/ζ , where δ denotes the death rate and where η denotes the population growth rate.

I then use this accounting framework to shed light on the dynamics of top wealth inequality
in the U.S. I first apply the framework to decompose the growth of the share of wealth owned
by households in the Forbes 400 list. I find that the annual growth rate of the Forbes 400 wealth
share, which averages to 3.9% between 1983 and 2017, can be decomposed into an average
within term of 3.0%, an average between term of 2.5%, and an average demography term of
−1.5%. In other words, the dispersion in wealth growth among top households (between) is
as important as their average wealth growth (within) in driving the recent rise in top wealth
inequality.

While the between term plays an outsized role at the beginning of the sample, its relative
importance has gradually decayed over time, from 3.3% in the 1980s to 1.5% in the 2010s.
I analyze this decline using the analytical expression for the between term discussed above,
1/2(ζ − 1)ν2. I find that most of the decline is driven by a thickening of the right tail of the
wealth distribution (ζ decreases from 1.6 to 1.4), rather than a decrease in the dispersion of
wealth growth (ν only decreases from 0.27 to 0.25). Put differently, the decline in the between
term mostly reflects the fact that, as wealth inequality gradually increased, it became harder for
new fortunes to displace existing ones.

I then use my analytical results to quantify the between term for the top 1%, 0.1%, and 0.01%
of the wealth distribution over the 20th century, for which panel data are not available. I con-
struct a yearly estimate of ζ , the local Pareto exponent, from cross-sectional data on the wealth
distribution. I construct a yearly estimate of ν, the standard deviation of wealth growth, using
the standard deviation of firm-level returns. I then combine these two estimates to obtain a
yearly estimate of a “model-implied” between term, 1/2(ζ − 1)ν2. I find that this between term
matches the inverted U-shape of top wealth inequality over the 20th century. It first peaked dur-
ing the Great Depression, remained low during World War II and the postwar economic boom,
before peaking again during the technological revolutions of the 1980s and 1990s. Overall, this
exercise suggests that low-frequency fluctuations in the between term are a central force behind
the fluctuations in wealth inequality observed during the 20th century.

Finally, I discuss the implication of the accounting framework for wealth mobility. I focus
on a simple notion of downward mobility: the average time a wealthy household remains in a
top percentile. I prove that, while a rise in the average wealth growth of top households (within)
decreases mobility, a rise in the dispersion of their wealth growth (between) increases mobility.
Together with my empirical findings, this implies that the recent rise in top wealth inequal-
ity is associated with a long-run rise in downward wealth mobility, even as wealth inequality
continues to increase.

Related Literature. This paper is motivated by a large empirical literature documenting the
dynamics of top wealth shares in the U.S. (Kopczuk and Saez, 2004; Saez and Zucman, 2016;
Kuhn et al., 2020). This literature tends to interpret the recent rise in top wealth shares as a
rise in the wealth growth of top households relative to the economy (e.g., Piketty, 2014, Mian
et al., 2020). In particular, Saez and Zucman (2016) define a “synthetic saving rate” based on
the difference between the growth of the average wealth in top percentiles and the average
return of top individuals. My paper clarifies that this synthetic saving rate is actually the sum
of an “actual” household saving rate and two other terms due to composition effects: a between
term (due to the dispersion of wealth growth) and a demography term (due to birth, death, and
population growth).
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Recent empirical papers on wealth inequality stress the importance of idiosyncratic shocks
for wealth inequality. Benhabib et al. (2011) and Benhabib et al. (2015) examine the station-
ary wealth distribution in an economy with idiosyncratic returns. Fagereng et al. (2016) and
Bach et al. (2017) emphasize the heterogeneity in asset returns among households in Norway
and Sweden, respectively. Benhabib et al. (2019) examine the role of idiosyncratic volatility
through the lens of a quantitative model.1 Campbell et al. (2019) decompose the change in the
variance of log wealth into a term due to differences in expected wealth growth and a term due
to differences in unexpected wealth shocks. Relative to this literature, the contribution of this
paper is to quantify the role of these idiosyncratic shocks for the growth of top wealth shares.

This work also adds to the theoretical literature that studies inequality through the lens of ran-
dom growth models (Wold and Whittle, 1957; Jones, 2015; Luttmer, 2012; Gabaix et al., 2016;
Jones and Kim, 2018). A fundamental tool in this literature is the Kolmogorov forward equa-
tion, which expresses the dynamics of the wealth density in terms of the dynamics of individual
wealth. My accounting framework corresponds to an “integrated” version of this equation, as
it expresses the dynamics of top wealth shares in terms of the dynamics of individual wealth.2

Finally, my accounting framework is related to Baily et al. (1992), Foster et al. (2008), and
Melitz and Polanec (2015), who decompose the change of firm productivity in the economy. My
paper can be seen as an extension of these frameworks to decompose the change of an average
quantity for a particular subgroup of the population, a top percentile. This requires accounting
not only for the entry and exit of individuals in and out of the economy (demography) but also
for the flow of existing individuals in and out of the top percentile (between).

Roadmap. The rest of the paper is organized as follows. Section 2 presents the accounting
framework. Section 3 characterizes its continuous-time limit in a wide range of random growth
models. In Section 4, I apply this framework to decompose the growth of the Forbes 400 wealth
share, and in Section 5, I examine the role of the between term for the top 1%, 0.1%, and 0.01%
in the U.S. over the 20th century. Section 6 discusses the implications of my findings for the
relationship between inequality and mobility, and Section 7 concludes. Appendix A contains
the proofs, Appendix B presents a logarithmic version of the decomposition, while Appendix
C considers some theoretical extensions.

The paper is accompanied with an online appendix and supplementary material. Online Ap-
pendix D contains some robustness checks about the Forbes 400 decomposition. Online Ap-
pendix E uses the accounting framework to decompose the growth of Billionaires’ shares in
Russian and China, while Appendix F uses it to decompose the growth of top income shares.
The supplementary material includes the Stata program topdecompose, which allows re-
searchers to run the accounting framework on their own datasets, as well as the datasets and
code necessary to replicate my results.

2. ACCOUNTING FRAMEWORK

This section presents an accounting framework to decompose the growth of the average
wealth in a top percentile. As I discuss below, when individual wealth is normalized by the
average wealth in the economy, this is equivalent to decomposing the growth of the share
of aggregate wealth owned by a top percentile. To develop intuition, Section 2.1 first covers
the case without demographic changes, while Section 2.2 covers the more general case with
demographic changes (i.e., with death and population growth).

1Existing theories to explain the concentrated portfolios of the rich include moral hazard, expertise, taste, or asym-
metric information (see, e.g., Di Tella, 2016; Haddad, 2014; Eisfeldt et al., 2017; Roussanov, 2010).

2A related paper is Steinbrecher and Shaw (2008), who characterizes the dynamics of quantiles in continuous-time.
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2.1. Case without Demographic Changes

For the sake of intuition, I first present the accounting framework without demographic
changes. Let t ∈ {0,1} denote time and let Ω denote the set of individuals in the economy,
which is fixed over time (for now). Consider a given top percentile p ∈ (0,1] of the wealth
distribution (e.g. the top p = 1%) and let Pt ⊂ Ω denote the subset of individuals who are in
the top percentile at time t.

Denote wit the wealth of individual i at time t. As individuals experience heterogeneous
wealth growth between t = 0 and t = 1, the set of individuals in the top percentile typically
changes over time; that is, P0 ̸=P1. More precisely, denoting O the set of individuals who get
out of the top percentile during the time period and I the set of individuals who get in, we can
write P1 = (P0 \O)∪ I .3

This equality implies that the growth of the total wealth in the top percentile can be decom-
posed into two terms:∑

i∈P1

wi1 −
∑
i∈P0

wi0∑
i∈P0

wi0

=

∑
i∈P0

wi1 −
∑
i∈P0

wi0∑
i∈P0

wi0︸ ︷︷ ︸
Within

+

∑
i∈I

wi1 −
∑
i∈O

wi1∑
i∈P0

wi0︸ ︷︷ ︸
Between

. (1)

The first term (within) is the growth of total wealth holding constant the composition of indi-
viduals in the top percentile: it corresponds to the wealth growth of individuals who are initially
in the top percentile, whether or not they remain in the top percentile by the end of the period.
In contrast, the second term (between) accounts for composition changes in the top percentile:
it depends on the difference between the wealth of individuals getting into the top percentile
and the wealth of individuals getting out of it.

By the very definition of a top percentile, the between term is always greater than or equal to
zero. This can be seen as a selection bias: only individuals with a high enough wealth growth
remain in the top percentile over time. As a result, the growth of wealth in the top percentile is
systematically higher than the wealth growth of individuals initially in the top percentile.

2.2. Case with Demographic Changes

For the sake of simplicity, the preceding analysis considered the case of a fixed population.
In reality, the population of individuals in the economy changes over time. This generates
additional composition changes in the top percentile. I now extend my accounting framework
to account for these demographic changes.

Formally, I now allow the set of individuals in the economy, Ωt, to change over time; that is,
Ω0 ̸=Ω1. As a result, the composition of individuals in the top percentile can now change for
two distinct reasons: either because of the heterogeneity in wealth growth among existing indi-
viduals (between) or because individuals enter and exit the economy over time (demography).

More precisely, the set of individuals who enter the top percentile between t= 0 and t= 1
can now be decomposed into two groups: I , the set of individuals who were already in the
economy at time t = 0 (i.e., who get into the top because of a higher-than-average wealth
growth), and B, the set of individuals who were not in the economy at time t= 0 (i.e., who are
born into the top percentile).

3Here, and elsewhere, “G1 \ G2” denote the set of individuals in the set G1 who are not in the set G2.
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FIGURE 1.—Venn Diagram of Composition Changes in a Top Percentile

P0 P1 Top Percentile at t= 1Top Percentile at t= 0

Population at t= 1Population at t= 0 Ω0 Ω1

O ID B

aThe figure represents Ωt , the set of all individuals in the economy, and Pt ⊂ Ωt , the subset of individuals in the top percentile, at
time t ∈ {0,1}. The intersections of these four sets define the four subsets used in the accounting decomposition: I = (P1 \ P0) ∩ Ω0 ,
the set of individuals who get in the top percentile from another part of the distribution; B = P1 \ Ω0 , the set of individuals who are born
into the top percentile; O = (P0 \ P1) ∩ Ω1 , the set of individuals who get out of the top percentile but remain in the economy; and
D = P0 \Ω1 , the set of individuals initially in the top percentile who exit the economy.

Similarly, the set of individuals who exit the top percentile between t= 0 and t= 1 can now
be decomposed into two groups: O, the set of individuals who remain in the economy at t= 1
(i.e., who get out of the top because of a lower-than-average wealth growth), and D, the set of
individuals who exit the economy at t= 1 (i.e., who die).4

Figure 1 plots a Venn diagram to illustrate the relationship between these four sets. Note that
these four sets fully summarize the composition changes in the top percentile between t = 0
and t= 1; that is, P1 = (P0 \ (O ∪D))∪ I ∪ B.

I introduce a few more notations before presenting the full accounting decomposition. For
any set G, denote nG the number of individuals in G relative to the number of individuals in P1,
and denote wG,t the average wealth of individuals in G at time t. Finally, denote q1 the wealth
of the last person in the top percentile at time t= 1 (i.e., the top p−quantile). These notations
make it easier to extend the accounting decomposition (1) in the presence of demographic
changes.

PROPOSITION 1: The growth of the average wealth in a top percentile can be decomposed
into three terms:

wP1,1 −wP0,0

wP0,0

=
wP0\D,1 −wP0\D,0

wP0\D,0︸ ︷︷ ︸
Within

+nI
wI,1 − q1
wP0,0︸ ︷︷ ︸

Inflow

+nO
q1 −wO,1

wP0,0︸ ︷︷ ︸
Outflow︸ ︷︷ ︸

Between

4I use the terms birth and death liberally: they simply refer to changes in the composition of households observed
by the econometrician. For instance, in the particular case in which top shares are constructed from a rotating panel
of individuals, birth and death would refer to individuals entering and exiting the panel over time.
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+ nB
wB,1 − q1
wP0,0︸ ︷︷ ︸
Birth

−nD

wP0\D,1

wP0\D,0
wD,0 − q1

wP0,0︸ ︷︷ ︸
Death

−(1− nP0
)

wP0\D,1

wP0\D,0
wP0,0 − q1

wP0,0︸ ︷︷ ︸
Population Growth︸ ︷︷ ︸

Demography

. (2)

The first term (within) corresponds to the growth of the average wealth of individuals initially
in the top percentile. Note that, because some individuals in the top percentile die from one
period to the next, the within term now only accounts for the wealth growth of individuals who
remain in the economy (i.e., in P0 \ D).

The second term (between) measures the contribution of composition changes in the top
percentile due to individuals present in the economy at t= 0 and t= 1. It is the sum of an inflow
and an outflow term. To understand the expression for each term, consider an individual below
the percentile threshold who gets into the top percentile after a higher-than-average wealth
growth. Because the total number of individuals in the top percentile is constant, they displace
the last individual in the top percentile, with wealth q1. Overall, this inflow increases the average
wealth in the top percentile by the fraction of individuals getting into the top percentile, nI ,
times the difference between the average wealth of entrants and the wealth at the percentile
threshold, wI,1 − q1.

Symmetrically, consider an individual above the percentile threshold who drops out of the
top percentile after a lower-than-average wealth growth. Because the total number of individu-
als in the top percentile is constant, they are replaced by the individual just below the percentile
threshold, with wealth q1. Overall, this outflow increases the average wealth in the top per-
centile, relative to change in the average wealth of top households initially in the top, by the
fraction of individuals dropping out of the top percentile, nO , times the difference between
wealth at the threshold and the average wealth of dropouts, q1 −wO,1.

Note that, in the presence of demographic changes, the fraction of existing individuals getting
in the top percentile (i.e., in I) is typically different from the fraction of individuals getting out
of it (i.e., in O). This makes it is essential to compare the wealth of each individual getting in
or out of the top percentile to q1, the wealth at the percentile threshold.

The third term (demography) measures the contribution of composition changes in the top
percentile due to individuals entering or exiting the economy between t = 0 and t = 1. It is
the sum of three terms that, respectively, account for birth, death, and population growth. The
first term (birth) is positive; it accounts for the contribution of individuals who are born into
the top percentile. Each birth into the top percentile increases wealth in the top percentile by
the difference between the wealth of the newborn and the wealth at the percentile threshold.
The second term (death) is negative; it accounts for the contribution of individuals in the top
percentile who die during the time period. Each death decreases wealth in the top percentile
by the difference between the (time adjusted) wealth of the deceased individual and the wealth
at the percentile threshold. Finally, the third term (population growth) is negative; it accounts
for the contribution of population growth: since a top percentile contains a constant fraction
of the population, an increase in population size increases the number of individuals in the top
percentile. This decreases the average wealth in the top percentile by the difference between the
(time adjusted) average wealth in the top percentile and the wealth at the percentile threshold.

While the between term is always greater than (or equal to) zero, the demography term
tends to be lower (or equal to) zero.5 Note that, in the absence of demographic changes, the
demography term is zero, and therefore the accounting decomposition reverts to Equation (1).

5See Section 3 for a more formal statement.
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Average Wealth versus Top Wealth Share. The accounting framework presented in Propo-
sition 1 decomposes the growth of the average wealth in a top percentile. When individual
wealth is normalized by the average wealth in the economy, this is equivalent to decomposing
the growth of the top percentile wealth share (this comes from the fact that the growth of the
top wealth share is equal to the growth of the average normalized wealth in the top percentile).6

In this case, the within term should be interpreted as the wealth growth of households initially
in the top percentile relative to the growth of the average wealth in the economy.

Arithmetic versus Logarithmic Growth. The accounting framework presented in Proposi-
tion 1 decomposes the arithmetic growth of the average wealth in a top percentile; that is,
(wP1,1 −wP0,0)/wP0,0. In Appendix B, I extend this accounting framework to decompose its
logarithmic growth; that is, log(wP1,1/wP0,0). This makes it easier to aggregate the result of
the decomposition over multiple time periods. Still, the two decompositions give very similar
results over short horizons (e.g., a year). In fact, in a wide range of random growth models,
these decompositions converge to the same limit as the time horizon tends to zero. The next
section characterizes this limit analytically.

3. ANALYTICAL RESULTS

This accounting framework can be seen as an “integrated” version of the Kolmogorov for-
ward equation. I now use this connection to characterize the limit of the accounting framework
as the time horizon tends to zero. I obtain closed-form expressions for the within, between, and
demography terms in a wide range of random growth models. These expressions shed light on
the mechanical forces driving the dynamics of top wealth shares. They can also be useful to
quantify the between and demography terms in the absence of panel data.

The exposition follows the previous section: Section 3.1 starts with a baseline model without
demographic changes (i.e., fixed population) to focus on the between term, while Section 3.2
considers a more general model with demographic changes (i.e., death and population growth)
to focus on the demography term.

3.1. Case without Demographic Changes

3.1.1. Diffusion Model

Wealth Dynamics. Consider an economy populated by a continuum of agents with mass
one that is fixed over time. Time t ∈ [0,∞) is continuous. I assume that the law of motion of
the wealth of individual i at time t, wit, follows a Markov diffusion process:

dwit

wit

= µt(wit)dt+ νt(wit)dBit, (3)

where Bit is a standard idiosyncratic Brownian motion for individual i. The geometric drift
µt(·) and geometric volatility νt(·) of wealth are allowed to depend on the wealth level.

The following set of regularity conditions ensures that the wealth density at any time t≥ 0,
denoted by gt, is smooth, positive on R+, and with finite mean: (i) the initial wealth density,
g0 : R+ → R+, has finite mean; (ii) µt(exp(.)) and νt(exp(.)) possess bounded continuous

6Formally, denoting St the share of aggregate wealth owned by a top percentile p at time t, we have St = p ·
wPt,t/wΩt,t. This implies that the growth of St is equal to the growth of the normalized wealth in the top percentile,
wPt,t/wΩt,t.
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derivatives of all orders; and (iii) idiosyncratic volatility never vanishes; that is, there exists
ϵ > 0 such that νt(.)≥ ϵ.7

Top Percentile. For a given top percentile p ∈ (0,1) of the wealth distribution, denote qt
the wealth of the last person in the top percentile (i.e., the top p quantile) and wPt the average
wealth in the top percentile p. The following proposition characterizes the dynamics of the
average wealth in the top percentile p in terms of the dynamics of individual wealth.

PROPOSITION 2: Assuming that wealth follows the diffusion process (3), the average wealth
in the top percentile, wPt, follows the law of motion:

dwPt

wPt

=Egt(·)· [µt(w)|w ≥ qt] dt︸ ︷︷ ︸
Within

+
1

2

gt(qt)q
2
t

pwPt

νt(qt)
2 dt︸ ︷︷ ︸

Between

, (4)

where Egt(·)· denotes the wealth-weighted expectation with respect to the wealth density gt.8

This proposition characterizes the asymptotic limit of the accounting framework (2) as the
time period tends to zero. In particular, the proposition shows that the between term is a “first
order” term; that is, it does not become negligible over short time horizons. The within term
is the wealth-weighted average geometric drift in the top percentile group. The between term
depends on the variance of wealth growth at the percentile threshold, νt(qt)2, but also on the
shape of the wealth distribution, gt(qt)q2t /(pwPt).

Heuristic Derivation. I now present a heuristic derivation of Proposition 2 to provide more
intuition on these analytical expressions for the within and between terms (see Appendix A for
a formal proof which relies on the Kolmogorov forward equation).

Let us consider the economy during t and t +∆t, where ∆t is a short period of time. At
the first order in ∆t, the diffusion process for wealth can be approximated by the following
binomial process:

wit+∆t =

{
(1 + µt(wit)∆t+ νt(wit)

√
∆t)wit with probability half,

(1 + µt(wit)∆t− νt(wit)
√
∆t)wit otherwise.

(5)

Applying the accounting framework (2) on this binomial process between t and t+∆t gives
that the growth of the average wealth in the top percentile can be decomposed into a within and
a between term.

The within term is defined in (2) as the wealth-weighted average wealth growth of individuals
initially in the top percentile. This gives Egt(·)· [µt(w)|w ≥ qt]∆t.

The between term is defined in (2) as the sum of an inflow and an outflow term. The inflow
term is measured as the wealth of individuals who enter the top percentile after receiving a
positive wealth shock minus the wealth of the percentile threshold, relative to the total wealth
in the top percentile. This gives9

Inflow =
1

pwPt

∫ qt

qt
1+νt(qt)

√
∆t

((
1 + νt(qt)

√
∆t
)
w− qt

) 1

2
gt(w)dw+ o(∆t)

7See the proof of Proposition 2 in Appendix A.
8That is, Egt(·)· [µt(w)|w ≥ qt] =

(∫∞
qt

µt(w)wgt(w)dw
)
/
(∫∞

qt
wgt(w)dw

)
.

9Here, and elsewhere, “o(∆t)” denotes an expression that converges faster than ∆t; that is,
lim∆t→0 |o(∆t)|/∆t= 0.
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=

(
1

2

gt(qt)qt
p

νt(qt)
√
∆t

)
·
(
1

2

qt
wPt

νt(qt)
√
∆t

)
+ o(∆t),

where the second line approximates the integral using the midpoint rule. As in the accounting
framework (2), the inflow term can be written as the product of two terms: the first term cor-
responds to the relative mass of individuals who enter the top percentile between t and t+∆t
while the second term corresponds to the average effect of an entrant on the growth of the
average wealth in the top percentile.10

Symmetrically, the outflow term is measured as the difference between the wealth at the
percentile threshold and the wealth of individuals who exit the top percentile after receiving a
negative wealth shock. Applied to the binomial process (5), this definition gives

Outflow =
1

pwPt

∫ qt
1−νt(qt)

√
∆t

qt

(
qt −

(
1− νt(qt)

√
∆t
)
w
) 1

2
gt(w)dw+ o(∆t)

=

(
1

2

gt(qt)qt
p

νt(qt)
√
∆t

)
·
(
1

2

qt
wPt

νt(qt)
√
∆t

)
+ o(∆t).

As in the accounting framework (2), the outflow term can be written as a product of two terms:
the first term corresponds to the fraction of individuals who exit the top percentile between t
and t+∆t while the second term corresponds to the average effect of an exit on the growth of
the average wealth in the top percentile.11

Note that the inflow term is equal to the outflow term at the first order in ∆t. Combining
these two expressions gives that the between term is equal to 1/2 · gt(qt)q2t /(pwPt) · νt(qt)2∆t
at the first order in ∆t, which concludes the proof.

Application. I now discuss two ways in which Proposition 2 can be useful for applied re-
searchers. First, for researchers with access to panel data (i.e., who can directly measure the
between term in the data), the proposition suggests a way to further decompose the between
term into a term due to the dispersion of wealth shocks, νt(qt)2, and a term due to the shape
of the wealth distribution, gt(qt)q2t /(pwPt). Along these lines, I later use this decomposition
to shed light on the decline of the between term observed for the Forbes 400 wealth share in
Section 4 as well as on the difference between the between term observed in the U.S. and in
China in Appendix E.

Second, for researchers without access to panel data (i.e., who cannot measure the between
term in the data), Proposition 2 provides a method to construct a “model–implied” between
term. Indeed, the shape of the wealth distribution, gt(qt)q2t /(pwPt), can be estimated using
cross-sectional data while the level of wealth volatility, νt(qt), can often be proxied using
external sources. I use this method to construct a “model–implied” between term for top wealth
percentiles over the 20th century in Section 5.

Stationary Case. One of the most pervasive regularities in economics is that many distri-
butions, including the wealth distribution, have a Pareto tail; that is, their densities satisfy

g(w)∼Cw−ζ−1 as w→∞, (6)

where C > 0 is a constant and ζ > 0 is called the Pareto exponent.12

10These two terms correspond to nI and (wI,1 − q1)/wP0,0, respectively.
11These two terms correspond to nO and (q1 −wO,1)/wP0,0, respectively.
12Here, and elsewhere, “f(x)∼ g(x)” for two functions f and g means limx→∞ f(x)/g(x) = 1.
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Under the following set of assumptions, the process (3) converges to a stationary distribution
with a Pareto tail: (i) the drift and volatility of wealth are constant over time (i.e., µt(w) = µ(w)
and νt(w) = ν(w)); (ii) they have finite limits as wealth tends to infinity (i.e., µ(w)→ µ < 0
and ν(w) → ν as w → ∞); and (iii) the wealth drift is large enough at wealth tends to zero
(i.e., µ(w)− ν(w)2/2≥K| lnw|β near 0, for some K > 0 and β > 1). Moreover, in this case,
the Pareto exponent of the wealth distribution ζ is higher than one (i.e., the distribution has a
finite mean).13

In this case, the expression for the between term takes a particularly simple form: taking the
limit p→ 0 in Proposition 2 gives

0 = µdt︸︷︷︸
Within

+
ζ − 1

2
ν2 dt︸ ︷︷ ︸

Between

. (7)

This expression says that the between term is asymptotically constant in the right tail and that
it only depends on the shape of the wealth distribution through its Pareto exponent ζ . This
comes from the fact that, for a distribution with a Pareto tail, the ratio between the mass of
individuals around a percentile threshold and the mass of individuals in the top percentile,
g(q)q/p, converges to ζ as p→ 0, while the ratio between wealth at a top percentile threshold
and the average wealth above the threshold, q/wPt, converges to 1 − 1/ζ .14 As a result, the
product between the two terms, g(q)q2/p, converges to ζ − 1.

Moreover, this expression says that the between term increases with the Pareto exponent ζ
(i.e., it decreases with the level of wealth inequality). This happens for two reasons. First, when
inequality is high, the wealth distribution is more spread out around the percentile threshold,
which decreases the fraction of individuals who enter or exit the top percentile per unit of time.
Second, and more importantly, when inequality is high, wealth at the percentile threshold is
small relative to the average wealth in the top percentile, which decreases the contribution of
each entry or exit to the top percentile.15 In the limit where the Pareto exponent ζ becomes close
to 1 (Zipf’s law), wealth at the percentile threshold becomes infinitesimally small compared to
the average wealth in the top percentile, and therefore the between term is close to zero.

Additionally, note that Equation (7) can also be used to pin down the Pareto exponent ζ of
the stationary distribution. The corresponding expression, ζ = 1− 2µ/ν2, is well known in the
inequality literature.16 The key insight is that this expression can be interpreted as a balance
equation for the share of wealth owned by a top percentile: the steady state Pareto exponent ζ
must be such that the (negative) within term µ is exactly compensated by the (positive) between
term 1/2(ζ − 1)ν2.

Finally, this expression is useful to obtain a back-of-the-envelope approximation for the
between term. In the U.S., the Pareto exponent of the wealth distribution is approximately
ζ = 1.5.17 As a result, for an idiosyncratic volatility of wealth growth ν = 0.15, we can expect
the between term to be around 0.5% per year. Doubling the idiosyncratic volatility to ν = 0.30

13The existence of the stationary wealth distribution follows from Karlin and Taylor (1981). The fact that it has
a Pareto tail follows from Gabaix et al. (2016). We could replace assumption (iii) by a reflecting boundary at some
wealth level.

14Here, and elsewhere, I remove the t subscript to refer to quantities associated with the stationary wealth distri-
bution.

15As discussed in the heuristic proof of Proposition 2, these two terms correspond to (g(q)q/p)ν
√
∆t→ ζν

√
∆t

and 1/2(q/wP)ν
√
∆t→ 1/2(1− 1/ζ)ν

√
∆t, which both increase in ζ .

16See, for instance, Gabaix (2009).
17See, for instance, Klass et al. (2006).
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would quadruple the between term to 2% per year. As shown below, this is indeed close to the
between term measured for the Forbes 400 wealth share.

3.1.2. Extensions

For the sake of simplicity, the preceding analysis focused on the case in which wealth follows
a diffusion process. I now discuss the between term in three extensions of the baseline model,
which are fully discussed in Appendix C.

Type Heterogeneity. The preceding analysis assumed that the drift and volatility of wealth
only depended on the wealth level. In reality, wealth dynamics also depend on other character-
istics, such as age or preferences.

To examine the effect of this type of heterogeneity, I consider an economy composed of sev-
eral groups of individuals, where each groups differ in their drifts and idiosyncratic volatilities.
In this economy, the within and between terms remain essentially the same: as in the baseline
model, they depend, respectively, on the wealth-weighted average drift of individuals in the top
percentile and on the average idiosyncratic variance of individuals at the percentile threshold.
In particular, heterogeneous drifts only have second-order effects on the between term.

Aggregate Shocks. The preceding analysis assumed that individuals were only exposed to
idiosyncratic shocks. In reality, some shocks tend to be correlated across individuals.

To examine the effect of correlated shocks, I consider an economy in which different types of
individuals have heterogeneous exposures to an aggregate Brownian Motion. I find that, in this
economy, the within term is stochastic: its exposure to the aggregate Brownian Motion is given
by the wealth-weighted average exposure of individuals in the top percentile. The between
term, however, is still deterministic; it depends on the idiosyncratic variance of individuals at
the percentile threshold as well as on the cross-sectional variance of their exposures to the
aggregate shock.

Jumps. The preceding analysis assumed that individual wealth followed a diffusion process
(e.g., log normal innovations). This implied that during a short period of time, only individuals
close to the percentile threshold could enter or exit the top percentile. In reality, the rapid rise
of a few individuals at the top of the distribution suggests that jumps may play an important
role in composition changes in the top percentile.

To understand how jumps (e.g., non-normal innovations) affect the formula for the between
term, I consider an economy in which individual wealth follows a jump-diffusion process. In
this case, the between term does not only depend on variance of (log) wealth growth and the
wealth density at the percentile threshold: it also depends on all of the higher-order cumulants
of wealth growth as well as on the higher-order derivatives of the wealth density around the
percentile threshold.

When cumulants do not depend on the wealth level and when the stationary wealth distribu-
tion has a Pareto tail, the expression for the between term takes a particularly simple form as
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p→ 0:18

Between =
ζ − 1

2
sd2 dt+

ζ2 − 1

3!
· skewness · sd3 dt

+
ζ3 − 1

4!
· excess kurtosis · sd4 dt+ higher-order terms . . .

(8)

where ζ > 1 denotes the Pareto exponent of the wealth distribution. While the first term is
the same as the one obtained in the diffusion (log-normal) model, the other terms in the sum
reflect the contribution of higher-order cumulants of log wealth growth, such as its skewness
and excess kurtosis. In particular, positive skewness and positive excess kurtosis increase the
between term relative to the diffusion case.

Note that the relative importance of higher-order cumulants increases with ζ; that is, it de-
creases with the level of wealth inequality. Intuitively, the higher the level of wealth inequality,
the more spread out the wealth distribution and therefore the less likely it is to enter the top
percentile far away from the percentile threshold. To take a quantitative example, going from a
distribution with ζ = 2.5 (the approximate Pareto exponent for the distribution of labor income)
to ζ = 1.5 (the approximate Pareto exponent for the distribution of wealth), the term due to the
variance of wealth shocks is divided by 3, the term due to skewness is divided by 4, and the
term due to excess kurtosis is divided by 6. I will return to this observation when examining
the effect of skewness and kurtosis for the growth of the Forbes 400 wealth share in Section 4.

3.2. Case with Demographic Changes

I now extend the analytical framework discussed above to account for demographic changes.
This allows me to obtain an analytical characterization for the demography term.

More precisely, I now assume that individuals die with a hazard rate δt > 0, which is inde-
pendent on wealth, and that population grows at rate ηt > 0. Both rates are continuous with
respect to time. Moreover, I assume individuals are born with wealth density gBt, which is
continuous with respect to time and such that the average wealth of newborn agents is finite;
that is,

∫
R+

wgBt(w)dw <∞.
The following proposition characterizes the dynamics of the average wealth in the top per-

centile, wPt, in terms of the dynamics of individual wealth.

PROPOSITION 3: Assuming that wealth follows the diffusion process (3) with death rate δt,
population growth ηt, and wealth density of newborn agents gBt, the average wealth in the top

18In a different context, Martin (2013) and Schmidt (2016) derive similar expressions for the risk-free rate and the
equity premium in terms of the higher-order cumulants of (log) consumption growth. In these expressions, the shape
of the utility function, as summarized by the relative risk aversion γ, plays a similar role as the shape of the wealth
distribution, as summarized by ζ .
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percentile wPt follows the law of motion:19

dwPt

wPt

=Egt(·)· [µt(w)|w ≥ qt] dt︸ ︷︷ ︸
Within

+
1

2

gt(qt)q
2
t

pwPt

νt(qt)
2 dt︸ ︷︷ ︸

Between

+

(
1

pwPt

∫ ∞

qt

(w− qt)gBt(w)dw− wPt − qt
wPt

)
(δt + ηt)dt︸ ︷︷ ︸

Demography

.

(9)

This proposition generalizes Proposition 2 to the case with demographic changes. The de-
mography term depends critically on the wealth density among newborn individuals. When
newborn individuals are not wealthy enough to be born into the top percentile (i.e., gBt(w) = 0
for w ≥ qt), the demography term is equal to −(wPt − qt)/wPt · (δt + ηt)dt. In contrast, when
newborn individuals are as wealthy as their parents (i.e., gBt(w) = gt(w)), the demography
term is zero. I now examine a particular model of inheritance, which constitutes an intermedi-
ary case between these two extremes.

Inheritance Model. I assume that each individual has k ∈N∗ children, where k is a random
variable. Children are born exactly when their parent die. To be consistent with a population
growth rate of ηt, the average number of children per parent must equal Ek[k] = (ηt + δt)/δt,
where Ek denotes the average with respect to k. Individuals bequest a proportion χ ∈ (0,1]
of their wealth at death, which is a random variable, and which is shared equally among their
children.20

Under these assumptions, the demography term becomes:21

Demography =

(
1

pwPt

Ek,χ

[∫ ∞

k
χ
qt

k

Ek[k]

(χ
k
w− qt

)
gt(w)dw

]
− wPt − qt

wPt

)
(δt + ηt)dt,

where Ek,χ denotes the joint expectation with respect to k and χ.
This formula allows us to derive a few properties about the demography term. First, the

demography term is strictly negative in this model. This is the case even when individuals can
fully pass their wealth to their children (i.e., χ= 100%), since the parents’ wealth must still be
shared across multiple children.

Second, the demography term decreases in the death rate and in the population growth rate.
It increases with the inheritance rate χ (in the sense of first order stochastic dominance). Fi-
nally, the demography term increases after a mean-preserving spread in the distribution of the

19More precisely, following the accounting framework 2, the demography term can be seen as the sum of a birth
term equal to 1

pwPt

(∫∞
qt

(w− qt)gBt(w)dw
)
(δt + ηt)dt, a death term equal to −(wPt − qt)/wPt · δt dt, and

a population growth term equal to −(wPt − qt)/wPt · ηt dt.
20Menchik (1980) provides evidence of equal sharing among children. Cowell (1998) studies a related model of

inheritance and its effect on the Pareto exponent of the wealth distribution.
21Formally, we have

gBt(w) = Ek,χ

[
k

Ek[k]
gt

(
k

χ
w

)
k

χ

]
.

Plugging this expression into (9) gives the result.
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inheritance rate χ or in the number of children k—this is because only children who inherit
enough enter the top percentile.22

Stationary Case. The demography term takes a particularly simple form in the stationary
case, when the wealth distribution has a Pareto tail. As above, assume that µt(w) = µ(w),
νt(w) = ν(w), δt = δ, and ηt = η with µ(w)→ µ < η + δ and ν(w)→ ν as w →∞. Under
these assumptions, the stationary distribution, if it exists, has a Pareto tail with Pareto exponent
ζ > 1.

Taking the limit p→ 0 in the expression for the demography term gives:23

0 = µdt︸︷︷︸
Within

+
ζ − 1

2
ν2 dt︸ ︷︷ ︸

Between

+
1

ζ

(
Ek,χ

[
k

Ek[k]

(χ
k

)ζ
]
− 1

)
(δ+ η)dt︸ ︷︷ ︸

Demography

. (10)

The effect of the shape of the wealth distribution on the between and demography term is
simply summarized by its Pareto exponent, ζ . The demography term increases with the Pareto
exponent ζ (i.e., it decreases with the level of wealth inequality). Intuitively, as when wealth
inequality increases, wealth at the percentile threshold becomes smaller relative to the average
wealth in the top percentile, which magnifies the negative effect of death and population growth.

This expression is useful to obtain a back-of-the-envelope approximation for the demography
term, even outside the steady state. In the U.S., the Pareto exponent of the wealth distribution
is approximately ζ = 1.5, the death rate is 2%, and the population growth rate is 1%. With an
inheritance rate χ = 50% (which is roughly the top marginal estate tax rate in the U.S.), the
formula predicts a demography term close to −1.5%.24 As shown below, this is approximately
equal to the average demography term measured for the Forbes 400 wealth share.

4. APPLICATION TO FORBES 400 WEALTH SHARE

In this section, I use the accounting framework developed in Section 2 to decompose the
growth of the Forbes 400 wealth share. I interpret the results through the lens of the analyti-
cal framework developed in Section 3. In particular, I show that the closed-form expressions
obtained in the previous section captures well the magnitude of the between and demography
terms measured in the data.

Section 4.1 presents the data, Section 4.2 discusses the accounting decomposition’s results,
and Section 4.3 discusses the robustness of the results with respect to measurement error.

4.1. Data

I focus on the list of the wealthiest 400 American households constructed by Forbes Maga-
zine annually since 1983.25 The list is created by a dedicated staff of the magazine, based on a

22Formally, this comes from the fact that
∫∞

k
χ
qt
k
(
χ

k
w− qt

)
gt(w)dw is convex in χ and k.

23More precisely, the demography term is the sum of a birth term equal to Ek,χ

[
k

Ek[k]

(
χ

k

)ζ]
((δ + η)/ζ)dt, a

death term equal to −(δ/ζ)dt, and a population growth term equal to −(η/ζ)dt.
24For this computation, I assume each household gives birth to either one or two households with equal probability;

that is, P(k = 1) = P(k = 2) = 0.5.
25This dataset has been examined by economists in the past. For instance, Kaplan and Rauh (2013a), Kaplan and

Rauh (2013b), and Capehart (2014) examine characteristics of households in the Forbes 400. Saez and Zucman (2016)
compare their estimates for the top 0.01% and the ones implied by Forbes. Gârleanu and Panageas (2017) stress the
growth of self-made billionaires over the long run compared to pre-existing billionaires.
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mix of public and private information.26 Forbes nominatively identifies the 400 wealthiest in-
dividuals in the U.S., allowing me to track the wealth of individuals from one year to the next,
which is key for the accounting decomposition.27 By contrast, other data sources used to track
the level of wealth inequality in the U.S. rely on repeated cross-sections.28 The Forbes 400 list
includes 1,518 distinct households between 1983 and 2017. I remove from the entire sample
all households that were later removed by Forbes due to posterior corrections or revisions in
methodology (73 households).

FIGURE 2.—Cumulative Growth of Top Wealth Percentiles in the U.S. a

1980 1990 2000 2010 2020

1

2

3

4

Year

Forbes 400
Top 0.01%
Top 0.1%
Top 1%
Top 10%

aThe figure plots the cumulative growth of the Forbes 400 wealth share and of the wealth share of the top 10%, 1%, 0.1%, and 0.01% from
Saez and Zucman (2016).

I obtain the number of U.S. households from the U.S. Census Bureau and the total household
wealth from the Financial Accounts of the United States. I focus on the percentile group that
includes the entirety of households in the Forbes 400 list in 2017. Because a percentile includes
a constant fraction of the total population, this top percentile only includes 264 households in
1983. With a slight abuse of language, I use the term “Forbes 400 percentile” to refer to this
top percentile and “Forbes 400 wealth share” to refer to its share of aggregate wealth.

While the Forbes 400 percentile accounts for a small percentage of the total U.S. population
(3% of the top 0.01%), it accounts for a substantial share of total U.S. wealth (approximately

26Forbes Magazine reports that “we pored over hundreds of Securities Exchange Commission documents, court
records, probate records, federal financial disclosures and Web and print stories. We took into account all assets:
stakes in public and private companies, real estate, art, yachts, planes, ranches, vineyards, jewelry, car collections
and more. We also factored in debt. Of course, we don’t pretend to know what is listed on each billionaire’s private
balance sheet, although some candidates do provide paperwork to that effect.”

27I extend the construction from Capehart (2014) to the 2012–2017 period. In certain cases, Forbes does not report
the wealth of individuals who exit the Forbes 400. For these cases, I use a Kaplan and Meier (1958) estimator to
obtain an estimate for the average wealth conditioning on exiting the Forbes 400. Appendix D discusses the accuracy
of this imputation method.

28The three main datasets on the wealth distribution in the U.S. are the Survey of Consumer Finances, estate tax
returns (see Kopczuk and Saez, 2004), and income tax returns (see Saez and Zucman, 2016), which all correspond to
repeated cross-sections.
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3% in 2017). Figure 2 plots the cumulative growth of the Forbes 400 wealth share since 1983 as
well as the cumulative growth of the wealth share of the top 0.01%, 0.01%, 1%, and 10% from
Saez and Zucman (2016). As discussed in their paper, most of the increase of wealth inequality
during the period is concentrated in the top 0.01%. Moreover, the growth of the top 0.01%
closely tracks the growth of the Forbes 400 wealth share, which suggests that understanding
the growth of the Forbes 400 wealth share can shed light on the overall rise in top wealth
inequality in the U.S.

4.2. Results

I now decompose the growth of the share of wealth owned by Forbes 400 percentile. More
precisely, as discussed in Section 2, I apply the accounting framework (2) on wealth normalized
by the average wealth in the economy. To obtain measures of the within and between terms
which are not impacted by within-family transfers, I classify as birth (i.e., B) any entry in the
top percentile following the death of a family member (i.e., due to inheritance). Conversely, I
classify as death (i.e., D) any exit from the top percentile that is linked to an in-vivo transfer.

Table I reports the results. The first row in Ia shows the geometric mean of each term over
the entire time period. I find that the 3.9% yearly growth of the Forbes 400 wealth share during
the time period is the sum of a within term equal to 3.0%, a between term equal to 2.5%, and
a demography term equal to −1.5%. Put differently, the between term (i.e., which measures
the contribution of changes in relative rankings among households) had a large effect on the
growth of the top wealth share: without it, the growth of the top wealth share would have been
1.4% instead of 3.9%.

Figure 3 plots the result of the accounting decomposition every year as well as the cumulative
sum of each term over time. Yearly fluctuations in the Forbes 400 wealth share are almost
entirely driven by the within term. As discussed in Gomez (2016), these large fluctuations
reflect the fact that top households tend to be more exposed to stock market returns compared
to the rest of the economy. By comparison, fluctuations in the between or demography terms
tend to be much smaller. Appendix Figure D.1 plots the autocorrelogram of each term. While
the within term is serially uncorrelated, the between term is positively correlated over time.

To focus on the low-frequency fluctuations of each term, Table Ia also reports the geometric
mean of the within, between, and demography terms across three time periods of equal duration
since 1983, which roughly correspond to distinct business cycles. The first period covers 1983–
1994, which includes the 1990–1991 recession. The second period covers 1994–2005, which
includes the 2001 recession, and the third period covers 2005–2017, which includes the 2007–
2009 recession. The main finding is that the between term exhibits important fluctuations over
time. In particular, the between term has been steeply decreasing over time: it decreases from
3.3% in the first part of the sample (1983–1994) to 1.5% in the third part of the sample (2005–
2017). In contrast, the demography term has remained relatively stable. I now study each term
in more detail.

4.2.1. Within Term

I first study briefly the within term. As defined in the accounting framework (2), this term
is defined annualy as the growth of normalized wealth for households in the top percentile at
the beginning of each year (and that do not die during the year). Because individual wealth is
normalized by the average wealth in the economy, this term corresponds approximately to the
difference between the growth of the average wealth of households initially in the top percentile
and the growth of the average wealth in the economy; that is, using the notations from Section
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TABLE I

DECOMPOSING THE GROWTH OF THE FORBES 400 WEALTH SHARE (1983-2017)a

(a) Summary

Growth of Top Percentile Wealth Share

Total Within Between Demography

All Years 3.9 3.0 2.5 −1.5

1983-1994 4.3 2.5 3.3 −1.4
1994-2005 3.7 2.9 2.7 −1.8
2005-2017 3.7 3.6 1.5 −1.4

(b) Within

Within

Total Average Wealth Growth in Top Percentile −Growth of U.S. Wealth per Capita

All Years 3.0 5.7 −2.6

1983-1994 2.5 4.8 −2.2
1994-2005 2.9 7.1 −4.1
2005-2017 3.6 5.2 −1.5

(c) Between

Between

Total Inflow Outflow

Total nI
wI,1−q1

wP0,0
Total nO

q1−wO,1

wP0,0

All Years 2.5 1.9 12.3 15 0.6 9.7 6

1983-1994 3.3 2.4 15.4 15 0.9 12.5 7
1994-2005 2.7 2.2 12.8 16 0.5 10.2 5
2005-2017 1.5 1.2 9.0 13 0.4 6.8 5

(d) Demography

Demography

Total Birth Death Population Growth

Total nB
wB,1−q1

wP0,0
Total nD

q1−
wP0\D,1

wP0\D,0

wD,0

wP0,0
Total 1−nP0

q1−
wP0\D,1

wP0\D,0

wP0,0

wP0,0

All Years −1.5 0.4 0.8 66 −1.1 2.2 −51 −0.8 1.2 −68

1983-1994 −1.4 0.4 1.2 76 −1.0 2.7 −38 −0.7 1.3 −59
1994-2005 −1.8 0.4 0.9 42 −1.2 2.1 −57 −1.0 1.4 −72
2005-2017 −1.4 0.4 0.5 77 −1.1 1.8 −59 −0.7 0.9 −73

aTable I reports the result of the accounting framework (2) for the Forbes 400 wealth share. Table Ib-Ic-Id report detailed statistics on the
within, between, and demography terms, respectively. All terms in percentage. Data are from Forbes, the Bureau of Economic Analysis, and
the Financial Accounts of the United States.
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FIGURE 3.—Decomposing the Growth of the Forbes 400 Wealth Sharea

(a) Annual Growth Rates
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aFigure 3a plots the annual growth rate of the Forbes 400 wealth share as well as the within, between, and demography terms defined in
the accounting framework (2). Figure 3b plots the same series cumulated over time; that is,

∏t
s=1984(1 + xs) for each series xt . Data are

from Forbes and the Financial Accounts of the United States.

2:29

Within =
wP0\D,1/wΩ1,1 −wP0\D,0/wΩ0,0

wP0\D,0/wΩ0,0

(11)

29Note that this approximation would be exact with the logarithmic decomposition discussed in Appendix B.
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≈ wP0\D,1 −wP0\D,0

wP0\D,0︸ ︷︷ ︸
Average Wealth Growth in Top Percentile

− wΩ1,1 −wΩ0,0

wΩ0,0

.︸ ︷︷ ︸
Growth of U.S. Wealth per capita

(12)

I report the result of this decomposition in Table Ib. The geometric mean of the average
wealth growth of households initially in the top percentile is 5.7% while the geometric mean
of the growth of the average wealth in the economy is 2.6% (both numbers are deflated for
inflation using the PCE price index). Note that the difference between these two terms is indeed
very close to the geometric mean of the within term, which is 3.0%.

Because the first term in this decomposition corresponds to the growth the average wealth for
a fixed subset of the population (the households initially in the top percentile), one can further
decompose it using the budget constraint of all households in this subset. One simple decom-
position is to write the average wealth growth of these households as the difference between
their average portfolio return and their average consumption rate (i.e., their consumption as a
fraction of their wealth).30 Since households in Forbes 400 hold the market in average (Gomez,
2016), I proxy their average return using the value-weighted stock market return from CRSP,
which has a geometric mean of 8.4% during the time period. This implies that the average
consumption rate of households in Forbes 400 is 8.4%− 5.7%= 2.7% in average.31

4.2.2. Between Term

I now study the between term. Following the accounting framework (2), the between term
is the sum of an inflow and an outflow terms. Each term is constructed as the product of two
quantities: the intensity of individuals getting in (resp. out of) the top percentile and the average
contribution of each entrant (resp. exit) to the average wealth in the top percentile. I report each
term separately in Table Ic. Note that, in average, a little more than 10% of households in
Forbes 400 enter or exit the top percentile annually due to changes in wealth rankings.

Variance. I now compare the between term to the closed-form expression obtained in the
case of the diffusion (log-normal) model presented in Section 3. This model makes a certain
number of assumptions that are not strictly satisfied in the data (mainly, that wealth follows a
diffusion, that there is a continuum of agents, and that the time period is infinitesimally small),
and so it is interesting to see how good of an approximation it really is.

This model-implied between term is 1/2 · gt(qt)q2t /(pwPt) · νt(qt)2, where gt(qt) denotes
the wealth density at the percentile threshold, qt denotes the wealth at the percentile threshold,
wPt denotes the average wealth in the top, and νt(qt) denotes the yearly standard deviation of
wealth growth at the percentile threshold (see Proposition 2).

To construct this model-implied between term, I first estimate the yearly variance of (log)
wealth growth at the percentile threshold, νt(qt)2 using local regression techniques. More pre-
cisely, I regress the (log) wealth growth and its square on log wealth around the percentile
threshold.32 I obtain an estimate for the yearly standard deviation by combining the local es-
timates for the first and second moments. As shown in Table IIa, I obtain an average standard
deviation equal to 0.27. As shown in Figure 4a, the estimate exhibits important fluctuations at
the business cycle frequency, with a particularly large spike during the dot-com bubble.

30This residual also includes taxes paid minus labor income as a proportion of wealth.
31One alternative decomposition could be to write the average wealth growth of households in a given subset as

the sum of a re-evaluation gain and the product of their income multiplied by their saving rate. The key point is that
this would identify the actual saving rate of these households rather than a “synthetic” version biased by composition
changes (Saez and Zucman, 2016).

32I use a local polynomial of degree one, with a triangular kernel with a bandwidth of one.
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TABLE II

MODEL-IMPLIED BETWEEN TERM IN THE FORBES 400 a

(a) Moments

Dispersion of Wealth Growth Shape of the Wealth Distribution

Std. Dev. Skewness Excess Kurt. qt/wPt gt(qt)qt/p gt(qt)q2t /(pwPt)

All Years 0.27 −0.34 6.58 0.34 1.29 0.45

1983-1994 0.27 −0.53 6.42 0.42 1.49 0.63
1994-2005 0.31 −0.26 7.70 0.30 1.23 0.38
2005-2017 0.25 −0.23 5.72 0.30 1.15 0.35

(b) Between (Model-Implied)

Model Implied Between Term

Total Due to Std. Dev. Due to Skewness Due to Excess Kurt.

All Years 2.0 1.7 −0.2 0.4

1983-1994 2.8 2.4 −0.2 0.5
1994-2005 1.9 1.8 −0.5 0.6
2005-2017 1.2 1.1 −0.1 0.2

a Table IIa shows the standard deviation, skewness, and excess kurtosis of log wealth growth at the percentile threshold using local
regression techniques. It also shows summary statistics on the shape of the wealth distribution at the percentile threshold using local regression
techniques. If the wealth distribution was exactly Pareto with exponent ζ, the second column would equal 1 − 1/ζ, the third column would
equal ζ and the last column would equal ζ−1. Table IIb uses these moments as input in (8) to report the between term implied by the second,
third, and fourth cumulants of log wealth growth, where all terms are percentage. Data are from Forbes.

I then estimate gt(qt)q
2
t /(pwPt) every year. As discussed in Section 3, this term can be writ-

ten as the product of qt/wPt, the ratio between wealth at the percentile threshold and average
wealth above the threshold, and gt(qt)qt/p, the relative mass of households around the per-
centile threshold. The first term can be directly observed in the data, while the second term
can be estimated by regressing the log number of households above a given wealth level on
log wealth around the percentile threshold.33 Table IIa reports the results of this estimation.
The first term, qt/wPt, averages to 0.34 while the second term, gt(qt)qt/wPt, averages to 1.29.
The product of these two terms, gt(qt)q2t /(pwPt), averages to 0.45—if the distribution had a
Pareto tail, this would correspond to a Pareto exponent ζ of 1.45, which is consistent with ex-
isting studies.34 Figure 4a plots this term every year: note that it decreases slowly over time,
indicating a steady rise in wealth concentration during the time period.

Finally, I combine the estimates for the dispersion of wealth growth and for the shape of the
wealth distribution to construct a model-implied between term 1/2 · gt(qt)q2t /(pwPt) · νt(qt)2.
Table IIb shows that the model-implied between term is 1.7% in average, which tends to be
lower than the actual between term, 2.5%. Figure 4b plots the model-implied between term
and the actual between term every year: despite the difference in levels, the model-implied
term tracks well the dynamics of the between term and, in particular, its decline over time.

One good property of the model-implied between term is that one can decompose its change
over time into a term due to the change in the variance of wealth growth and a term due to a

33Indeed, we have ∂ln q ln
(∫∞

q
gt(w)dw

)
= gt(qt)qt/p. I use a kernel with a bandwidth of one around the

percentile threshold.
34See, for instance, Klass et al. (2006).
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FIGURE 4.—Between Term in the Forbes 400 through the Lens of the Statistical Modela

(a) Estimates of gt(qt)q2t /(pwPt) and νt(qt)2
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aFigure 4a plots the time series of gt(qt)q2t /(pwPt) and the cross-sectional variance of log wealth growth at the percentile threshold
νt(qt)

2 . Figure 4b plots the between term, the one implied by the variance of log wealth growth (log-normal model), and the one implied by
variance, skewness, and excess kurtosis of log wealth growth (jump-diffusion model). Data are from Forbes.
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where ∆x (resp. ⟨x⟩) denotes the difference (resp. average) of variable x between the 2005-
2017 and 1983-1984.35 I obtain that most of the decline in the between term is driven by a rise
in wealth concentration, which made it harder for new fortunes to displace existing fortunes,
rather than by a decline in idiosyncratic shocks.

What explains the dispersion of wealth growth for households around the percentile thresh-
old? Since most households in the Forbes 400 tend to disproportionately invest their own firms,
one simple hypothesis is that it is driven by the cross-sectional dispersion of stock market
returns. To test this idea, I regress the yearly variance of household-level wealth growth on
the equal-weighted variance of firm-level returns, computed using stock-level returns from the
Center for Research in Security Prices (CRSP). Table III shows that the resulting R2 ≈ 0.73 is
high, suggesting the yearly fluctuations in the variance of firm returns explain well the yearly
fluctuations in the variance of wealth growth. The coefficient of 0.34 can be interpreted as say-
ing that the average household in the Forbes 400 holds

√
0.34≈ 60% of its wealth in their firm

and the rest in a diversified portfolio of firms. Finally, the estimate for the intercept is close
to zero, meaning that the level of portfolio concentration, identified purely from time-series
variation, also accounts for the level of the variance of wealth growth. This suggests that the
variance of wealth growth is almost entirely driven by the variance of firm-level returns. I will
use this observation to construct a model-implied between term for the 20th century in Section
5.

TABLE III

DISPERSION OF WEALTH GROWTH AND DISPERSION OF FIRM-LEVEL RETURNSa

Variance of Wealth Growth

(1)

Variance of Firm Returns 0.34
(0.05)

Constant −0.01
(0.01)

R2 0.73
Period 1983-2017
N 34

a The table shows the result of regressing the cross-sectional variance of (log) wealth growth νt(qt)
2 for the Forbes 400 on the cross-

sectional variance of firm-level (log) returns. Estimation is done via OLS. Standard errors are in parentheses and are estimated using Newey-
West with three lags. Data are from Forbes and CRSP.

Higher-Order Cumulants. As discussed in Section 3, when the process for wealth follows
a jump-diffusion process, the between term depends not only on the variance of wealth growth
but also on all of its higher-order cumulants. I now evaluate the contribution of the third and
fourth cumulant for the between term.

To simplify the analysis, I focus on the expression for the model-implied between term in
the case in which the distribution has a Pareto tail with Pareto exponent ζ and in which higher-
order cumulants are constant in the right tail of the wealth distribution. In this case, Equation
(8) gives that the term due to skewness is 1/3!(ζ2 − 1) · skewness · sd3, while the term due to
kurtosis is 1/4!(ζ3 − 1) · excess kurtosis · sd4. I use local polynomial regressions to estimate the
third and fourth moments of wealth growth at the percentile threshold. I estimate the Pareto

35The quantification of each term is done using Table IIb.
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exponent ζ as one plus the estimated gt(qt)q
2
t /(pwPt) to be consistent with the variance term

estimated above.
As shown in Table IIa, I find that the average estimated skewness is negative at −0.34 (i.e.,

more downward realizations compared to the log-normal distribution), while the average excess
kurtosis is positive at 6.6 (i.e., more extreme realizations compared to the log-normal distribu-
tion). After plugging these estimates into Equation (8), I find that the skewness decreases the
between term by 0.2%, while the excess kurtosis increases the between term by 0.4% annually
(see Table IIb). These results suggest that, overall, the effect of higher-order cumulants on the
between term is relatively small. As discussed in Section 3.1, one reason is that top wealth
inequality is so high that, at the yearly horizon, most of the entry in the top percentile is driven
by households close to the top percentile threshold rather than by households away from the
top percentile threshold with extremely high wealth realizations.

Figure 4b compares the between term implied by the diffusion model (i.e., due to the variance
of wealth growth) to the one implied by the jump-diffusion model (i.e., including higher-order
cumulants). Both series remain close over time, suggesting higher-order cumulants do not mat-
ter much for the dynamics of the between term either. One exception is 2001, when the term
due to variance drastically overestimates the actual between term, in contrast with the term
including higher-order cumulants. This reflects the fact that the distribution of wealth shocks
was extremely left-skewed during the burst of the dot-com bubble, which limited the effect of
this dispersion in wealth growth on the growth of the top percentile wealth share.

4.2.3. Demography Term

I now study the demography term. Following the accounting framework (2), the demography
term is the sum of three terms due to birth, death, and population growth. Each term is con-
structed as the product of two quantities: the intensity of individuals entering (resp. exiting) the
top percentile and the average contribution of each entrant (resp. exit) to the average wealth in
the top percentile. I report each term separately in Table Id. Note that the death rate of house-
holds in the Forbes 400, nD , averages to 2.2% while the rate of population growth, 1− nP0

,
averages to 1.2%.

Death and Population Growth. I first compare the terms due to death and population growth
measured in the data to the terms implied by the model presented in Section 3. Proposition 3
predicts that at short horizons, the terms due to death and population growth should be close to
−(wPt − qt)/wPt · δt and −(wPt − qt)/wPt · ηt, respectively. Since the ratio between wealth
at the threshold and wealth above the threshold, qt/wPt, averages to 0.34 (Table IIa), this gives
a model-implied death term of −1.5% and a model-implied population growth term of −0.8%.
As reported in Table Id, these terms are −1.1% and −0.8% in the data, respectively. While it is
a good fit, the model slightly overestimates the magnitude of the actual death term. This reflects
the fact that, during the time period, households that died tended to be less wealthy than the
average household in the Forbes 400 (whereas the model assumes a death rate independent of
wealth).

Table Id reports the average of the terms due to death and population growth over three time
periods. Note that, even though the death rate in the Forbes 400 percentile and the population
growth rate in the U.S. have declined over time, the terms due to death and population growth
have remained pretty much constant. This comes from the fact that the decline in the rate of
population renewal has been counterbalanced by a rise in wealth inequality (i.e., a decrease in
qt/wPt), which magnified the negative effect of given death rate and population growth rate on
the average wealth in the top percentile.
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Birth. I now study the term due to birth. The inheritance model discussed in Section
3.2 gives a closed-form expression for the birth term equal to Ek,χ

[
k

Ek[k]

(
χ

k

)ζ]
(δ + η)/ζ

(Equation (10)). To quantify this model-implied birth term, I use the estimate for ζ ob-
tained for the between term; that is, 1 + gt(qt)q

2
t /(pwPt); that is, ζ ≈ 1.45. I calibrate an

inheritance rate χ = 0.5 from the top marginal estate tax during the time period. Finally,
I assume that the distribution for the number of children k is binomial, with probabilities
P(k = 1) = 1−P(k = 2) = 0.45 chosen to match the rate of population growth.36 After com-
bining these parameter, I obtain an average birth term equal to 0.5%, which is very close to the
actual average of the birth term measured in the data, 0.4%.

4.3. Measurement Error

The wealth of the richest individuals in the economy is inevitably measured with error. I now
discuss the effect of this measurement error on the growth of the Forbes 400 wealth share, as
well as its decomposition into a within, between, and demography terms.

The first concern is that Forbes may systematically overestimate the wealth of the top 400
households. For instance, Atkinson (2008) argues the magazine may give inflated values for
wealth because debts are harder to track than assets. Along these lines, Raub et al. (2010) show
that the wealth of deceased households reported on estate tax returns is approximately half of
the wealth estimated by Forbes.37 However, this type of measurement error in levels does not
impact the growth of top wealth shares or its accounting decomposition.

A more important concern is that Forbes measures the wealth of top households with noise.
If the measurement error is completely persistent, as noted in Luttmer (2002), this would lead
Forbes to overestimate the level of top wealth shares. This type of error does not affect the
growth of top wealth shares or its accounting decomposition. If, however, the measurement
error has a transitory component, it may generate artificial entry and exit in the top percentile.
This would lead me to underestimate the within term and overestimate the between term.

As discussed above, I removed from the sample every household that was later removed
by Forbes due to methodological error. Still, to assess the importance of this transitory mea-
surement error in the remaining sample, I measure the serial correlation of individual wealth
growth in the remaining sample. The idea is that economic theory suggests that wealth is close
to a random walk at large levels of wealth (see, e.g., ?). Therefore, the amount of negative serial
correlation in wealth growth can be informative about the importance of transitory measure-
ment errors. Table D.II in Appendix D shows that the serial correlation of wealth growth at the
individual level is close to zero, suggesting that transitory measurement error do not play a big
role in the between term.38

A final concern is that Forbes’s coverage may become more and more extensive over time,
and therefore the magazine gradually discovers rich households that were not reported earlier.
This would lead me to overestimate the between term as well as the growth of top wealth shares.
To mitigate this effect, I dropped the first year in which the Forbes 400 list was published, which
is 1982. Another reassuring fact is that I find that the actual between term is well approximated
by the model-implied between term, which only uses the distribution of wealth growth among
existing households. Still, the 0.4% average gap observed between the actual between term and
the one implied by the statistical model may be due to this type of errors (see Table II).

36Indeed, remember that we must have Ek[k]δ = η+ δ.
37Alternatively, this may reflect the fact that these households under-report their wealth on these tax returns.
38In Appendix D, I show that the relative bias in the between term is well approximated by −2ρ, where ρ is the

AR(1) coefficient of wealth growth. With an estimated ρ approximately equal to −0.01, this suggests a measurement
error of only four basis points.
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5. QUANTIFYING THE BETWEEN TERM IN THE ABSENCE OF PANEL DATA

The previous section shows that the diffusion (log-normal) model approximates well the
level and the dynamics of the actual between term. This suggests that one can use this model
to quantify the between term in settings where panel data are not available. I now use this idea
to quantify the between term for the top 1%, 0.1%, and 0.01% of the wealth distribution over
the 20th century, for which panel data are not available.

Methodology I first estimate the yearly standard deviation of wealth growth at each per-
centile threshold νt(qt) by taking the product of the share of wealth invested in equity (using
data from Kopczuk and Saez, 2004 for 1916–1962 and Saez and Zucman, 2016 for 1962–2012)
and the cross-sectional standard deviation of firm-level returns. This is motivated by the fact
that in the Forbes 400, the variance of wealth growth correlates well with the variance of re-
turns (Table III). I scale this product so that the standard deviation of the top 0.01% matches the
standard deviation of the Forbes 400 in 1983–2012. Table IV shows the estimated standard de-
viation for top percentiles. Over the time period, the standard deviation equals 0.14 for the top
1% and 0.21 for the top 0.01%. Note that the average standard deviation of wealth increases in
the right tail of the wealth distribution, which reflects the fact that top percentiles tend to invest
more in equity.

I then estimate the shape of the wealth distribution gt(qt)q
2
t /(pwPt) at the top 1%, 0.1%, and

0.01% percentiles using cross-sectional data on the wealth distribution available from Kopczuk
and Saez (2004) for 1916–1962 and Saez and Zucman (2016) for 1962–2012. As explained
above, the ratio qt/wPt can be directly measured as the ration between wealth at the percentile
threshold and the average wealth in the top percentile, while gt(qt)qt/p can be estimated by
comparing the ratio between two log top percentiles to the ratio of their respective log quan-
tiles.39 Table IV shows the estimated gt(qt)q

2
t /(pwPt) for top percentiles. The estimate does

not vary much across top percentiles, reflecting that the wealth distribution is close to Pareto
above the top 1%.

Results. Figure 5b plots the between term implied by a diffusion model, 1/2 ·gt(qt)q2t /(pwPt)·
νt(qt)

2, for the top 1%, top 0.1%, and top 0.01% percentiles from 1916 to 2012. The between
term roughly follows a U-shape over time for all top percentiles. The between term for the
top 0.01% peaked at 2% during the Great Depression and then steadily decreased, reaching its
minimum in 1945. The between term again increased starting in 1960 and reached its maxi-
mum at the height of the dot-com bubble. Overall, the between term was roughly twice as high
in 1983–2012 as it had been for the rest of the century.

To better understand what drives the between term over time, Figure 5a plots separately
the term due to the idiosyncratic variance of wealth νt(qt)

2 and the term due to the shape
of the wealth distribution gt(qt)q

2
t /(pwPt) for the top 0.01%. Relative fluctuations in νt(qt)

2

are much larger than the relative fluctuations in gt(qt)q
2
t /(pwPt).40 In other words, most of

the time-series fluctuations in the between term are driven by fluctuations in the idiosyncratic
volatility of wealth growth rather than by changes in the shape of the wealth distribution.

I now examine the variation of the between term across top percentiles. According to Saez
and Zucman (2016), the yearly growth rate of the top 0.01%’s wealth share in 1982–2012

39This is a discretized version of the regression of the log top percentile on log quantiles performed in the previous
section.

40More precisely, the ratio between the 90th and 10th quantile of the realizations of νt(qt)2 is approximately
eight, while it is only two for gt(qt)q2t /(pwPt). These large fluctuations in the idiosyncratic volatility of stock
market returns have been examined by Campbell et al. (2001) and Herskovic et al. (2016). Theories to explain these
fluctuations have been discussed in Brandt et al. (2009), Fink et al. (2010), and Herskovic et al. (2020).
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averaged to 4.3%, while the yearly growth rate of the top 1% averaged to 1.9%, a difference
of 2.4% per year. Table IV suggests that the differences in the between term between the two
percentiles can explain a 1.3% differential. This difference is almost fully driven by differences
in the standard deviation of wealth growth across the two percentiles rather than by differences
in the shape of the wealth distribution.

FIGURE 5.—Model-implied Between Term for Top Wealth Percentiles in the U.S. over the 20th Centurya

(a) Estimates of gt(qt)q2t /(pwPt) and νt(qt)2 for the Top 0.01%
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(b) Model-implied Between Term
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aFigure 5a plots the estimated gt(qt)q
2
t /(pwPt) and νt(qt)

2 over time for the top 0.01%. The shape of the wealth distribution
gt(qt)q

2
t /(pwPt) is estimated using cross-sectional data on the wealth distribution. The variance of log wealth growth νt(qt)

2 is proxied
by multiplying the share of wealth invested in equity with the cross-sectional standard deviation of stock market returns. Figure 5b plots the
diffusion term implied by the diffusion model, 1/2 · gt(qt)q2t /(pwPt) · νt(qt)2 , for the top 1%, top 0.1%, and top 0.01%. Data are from
Kopczuk and Saez (2004), Saez and Zucman (2016), and CRSP.
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TABLE IV

MODEL-IMPLIED BETWEEN TERM OVER THE 20TH CENTURY a

Top 1% Top 0.1% Top 0.01%

gt(qt)q2t /(pwPt) 0.61 0.65 0.76
νt(qt)2 0.03 0.04 0.06
Between Term (Model-Implied) 0.8% 1.2% 2.0%

aTable IV uses the diffusion (log-normal) model to quantify the between term over the 20th century for the top 1%, 0.1%, and 0.01%
between 1926 and 2012. The shape of the wealth distribution gt(qt)q

2
t /(pwPt) is estimated using cross-sectional data on the wealth

distribution. The variance of log wealth growth νt(qt)
2 is proxied by multiplying the share of wealth invested in equity with the cross-

sectional standard deviation of stock market returns. Given these two estimates, the yearly model-implied between term is obtained as 1/2 ·
gt(qt)q

2
t /(pwPt) · νt(qt)2 . Data are from Kopczuk and Saez (2004), Saez and Zucman (2016), and CRSP.

6. IMPLICATIONS FOR WEALTH MOBILITY

In this section, I discuss the implications of the accounting decomposition for the relation
between wealth inequality and mobility. More precisely, I focus on a downward concept of
mobility: how long, on average, does a rich household remain in a top percentile? The advan-
tage of this notion of “downward” mobility is that it only depends on the wealth dynamics of
individuals in the right tail of the wealth distribution, which is easier to model.41

For the remainder of this section, I assume that the law of motion of wealth is given by a
diffusive process with constant drift and idiosyncratic volatility; that is,

dwit

wit

= µdt+ ν dBit, (13)

with a reflecting boundary at a wealth level normalized to one. Moreover, I assume that in-
dividuals die with death rate δ > 0, population grows at rate η ≥ 0, and newborn agents are
born with initial wealth w = 1. Under these assumptions, the stationary density of wealth is
given by g(w) = ζw−ζ−1 for w ≥ 1, where ζ is the positive solution of the quadratic equation
ζµ+ 1/2ζ(ζ − 1)ν2 − (δ+ η) = 0.42

Consider a wealth level w > 1 and denote Tw(w) the average time an individual with initial
wealth w ≥w remains above w:

Tw(w) = Et[inf{τ s.t. wit+τ ≤w or i dies}|wit =w].

The following lemma gives a closed-form formula for this average first passage time:

LEMMA 4—Average First Passage Time: When wealth follows the law of motion (13), the
average first passage time is43

Tw(w) =
1

δ

(
1−

(
w

w

)−ξ
)
, (14)

where −ξ denotes the negative solution of the quadratic equation ξµ+ 1/2ξ(ξ − 1)ν2 − δ = 0.

41In particular, compared to a notion of “upward” mobility, we can abstract from the role of labor income or
government programs, which matter most for households below the top 1%.

42See, for instance, Gabaix et al. (2016).
43The average first passage time of a Brownian motion is a classic result; for instance, see Karlin and Taylor (1981).
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Naturally, the average first passage time increases with wealth: it equals 0 at the percentile
threshold and converges to 1/δ as wealth tends to infinity (i.e., the average time before death).
More interestingly, the exponent ξ governs the speed at which the average first passage time
converges to 1/δ as wealth tends to infinity.

The average first passage time increases with the average wealth growth of individuals µ and
decreases with the idiosyncratic volatility ν (through change in ξ). Intuitively, the higher the
dispersion of wealth shocks, the more likely are negative shocks.

Still, an increase in idiosyncratic volatility does not necessarily mean that wealth mobility
decreases. Indeed, an increase in idiosyncratic volatility increases wealth inequality, which
increases the typical distance between a household in the top percentile and the percentile
threshold. To take this effect into account, I now examine the average first passage time for an
average household in a top percentile. Consider a given top percentile p ∈ (0,1) and denote q
the wealth of the last person in the top percentile at time t= 1 (i.e., the top p−quantile). Denote
T the average first passage time for an average household in a top percentile:

T =Eg [Tq(w)|w ≥ q] , (15)

where Eg denotes the expectation with respect to the stationary wealth density g. The next
proposition gives a simple closed form formula for the average passage time for an average
household in the top percentile p.

PROPOSITION 5—Average First Passage Time for an Average Household: The average time
an average household in the top percentile p remains in the top is

T =
1

δ

(
1 +

ζ

ξ

)−1

. (16)

Interestingly, T does not depend on the top percentile p. This reflects the “scale-free” prop-
erty of Pareto distributions. More precisely, T only depends on the ratio between ζ and ξ,
which is intuitive: ξ controls the speed at which the first passage time decays as wealth tends
to infinity while ζ controls the speed at which the density of wealth decays as wealth tends to
infinity.
T increases with the average wealth growth of households, µ. This is because a higher av-

erage wealth growth of top households increases both the average first passage time at a given
wealth level (i.e., decreases ξ) and the level of wealth inequality (i.e., decreases ζ). These two
forces combine to decrease mobility.

In contrast, the effect of idiosyncratic volatility ν on T is more ambiguous. On the one hand,
a rise in idiosyncratic volatility decreases the average first passage time from a given wealth
level (i.e., it decreases ξ). On the other, it also increases the level of inequality in the long run
(i.e., it decreases ζ). Still, for typical parameters, this second force does not fully compensate
the first one, and mobility increases.

A Stylized Calibration. I now plug the results of the accounting framework for the Forbes
400 percentile in the expression for T in (16) to evaluate the effect of the observed rise in top
wealth shares on long-run wealth mobility. I calibrate the death rate δ and population growth
rate η to match the respective rates reported in Table Id; that is, δ = 2.2% and η = 1.2%. For the
initial (pre-1980) steady state, I pick ν = 0.10 to match the average idiosyncratic volatility for
the top 0.01% in 1960–1980 and µ= 1.5% to match an initial Pareto exponent of the stationary
wealth distribution ζ = 1.8 (from Section 5). These parameters give ξ = 3.3. Using Equation
(16), this implies that the average time in the top percentile is T = 30 years.
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I consider a permanent increase in the drift and volatility of wealth consistent with the results
of the accounting framework for the Forbes 400 in Table Ia, that is, a permanent change to
µ= 3% and ν = 0.27. In this new steady state, the Pareto exponent ζ is approximately equal
to 1.1, while ξ is approximately equal to 0.7. Using Equation (5), this implies that the average
time in the top percentile is T = 18 years. Even though the new steady state has a higher level
of wealth inequality, it also has a higher level of wealth mobility.44

7. CONCLUSION

This paper develops an accounting framework to better understand the dynamics of top
wealth shares. The growth of a top percentile wealth share can be decomposed into three dis-
tinct terms: a within term (the growth of the top wealth share absent any composition change),
a between term (which accounts for the flow of individuals in and out of the top percentile),
and a demography term (which accounts for the entry and exit of individuals in the economy).
This accounting framework can be seen as an “integrated” version of the Kolmogorov forward
equation. Using this connection, I obtain simple analytical expressions for the within, between,
and demography terms over short periods of time. These closed-form expressions are useful to
understand the mechanical forces behind top wealth shares. They can also help researchers to
quantify the between and demography terms in the absence of panel data.

After applying this framework on the growth of the Forbes 400 wealth share, I find that the
between term has played a key role in the recent rise in top wealth inequality: more than half
of the recent rise in top wealth inequality is due to the rise of new fortunes in top percentiles.

My findings have direct implications for our understanding of top wealth inequality. While
the existing literature has focused on factors driving the average growth of existing fortunes
(i.e., their average return on capital or their average saving rate), this paper stresses the impor-
tance of understanding better the growth rate of new fortunes (i.e., the heterogeneity in growth
rates within wealthy households).

While this paper is purely descriptive, the moments identified by the accounting framework
could be used to discipline existing models of wealth inequality. Finally, the methodology de-
veloped in this paper should be useful in other settings. As a first step in this direction, I also use
the accounting framework to decompose the rise in billionaires in China and Russia (Appendix
E) as well as the rise in top income shares in the U.S. (Appendix F). Another interesting appli-
cation would be to examine the rise in firm concentration (Autor et al., 2017; Hartman-Glaser
et al., 2019; Gutiérrez and Philippon, 2019). I leave these topics for future research.

APPENDIX A: PROOFS

PROOF OF PROPOSITION 1: I first decompose the average wealth of individuals in the top
percentile at time t= 1 as follows:

wP1,1 = nP0\DwP0\D,1 − nOwO,1 + nBwB,1 + nIwI,1

=
wP0\D,1

wP0\D,0

(nP0
wP0,0 − nDwD,0)− nOwO,1 + nBwB,1 + nIwI,1.

44This relates to the empirical findings of Kopczuk et al. (2010), who find that even though labor inequality in-
creased at the end of the 20th century, labor mobility remained more or less constant.
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I now add and subtract q1, the wealth of the last person in the top percentile at time t= 1:45

wP1,1 =
wP0\D,1

wP0\D,0

wP0,0 − (1− nP0
)

(
wP0\D,1

wP0\D,0

wP0,0 − q1

)
− nD

(
wP0\D,1

wP0\D,0

wD,0 − q1

)
+ nO(q1 −wO,1) + nB(wB,1 − q1) + nI(wI,1 − q1).

Subtracting and dividing by the average wealth in the top percentile at time t= 0 gives Equation
(2). Q.E.D.

PROOF OF PROPOSITION 2: Step 1— Existence, smoothness, and upper bounds for the
wealth density. I first show that there is a weak solution of the stochastic differential equation
(SDE) and that its density is smooth. Let ωit = lnwit denote log wealth. Using Ito’s lemma,
the process for log wealth ωit solves the following SDE:

dωit =

(
µt (e

ωit)− 1

2
νt (e

ωit)2
)
dt+ νt (e

ωit)dBit.

As shown in Rogers (1985), the solution of this SDE process has a weak solution and its transi-
tion density between s and t, denoted by πs→t(ωs, ωt), is C∞ in t,ωs, ωt, positive everywhere,
and satisfies the Kolmogorov forward equation.

As discussed in Friedman (1964) (Section 9.6), the fact that µt(exp(.)) and νt(exp(.)) are
bounded gives upper bounds on the derivatives of the transition density: there exist constants
A,d such that for all ω0, ω, t ∈ [0, T ] and any integer n≥ 0,

|∂tπ0→t(ω0, ω)| ≤
A

t3/2
e−d

(ω−ω0)2

t , (17)

|∂n
ωπ0→t(ω0, ω)| ≤

A√
t1+n

e−d
(ω−ω0)2

t . (18)

Denote γt the density of log wealth, which is given by γ0(ω) = eωg0(e
ω) and

γt(ω) =

∫
R
γ0(ω0)π0→t(ω0, ω)dω0,

for any time t > 0. Since π0→t is positive everywhere, γt is positive everywhere. Moreover,
the dominated convergence theorem implies that γt inherit the smoothness of π0→t; that is,
γt ∈ C∞.46

Next, I prove that the wealth distribution has finite mean at any time t ≥ 0. We have, for
t≥ 0 and x≥ 0,∫ x

0

eωγt(ω)dω =

∫ x

0

eω
(∫

R
γ0(ω0)π0→t(ω0, ω)dω0

)
dω

≤
∫
R
γ0(ω0)

(∫ x

0

eω
A√
t
e−d

(ω−ω0)2

t dω

)
dω0

≤
(∫

R
γ0(ω0)e

ω0 dω0

)(∫
R
eu

A√
t
e−du2

t du

)
, (19)

45This uses the fact that 1 = nP0 − nD − nO + nB + nI .
46Equation (18) gives an upper bound for the space derivative of the transition density.
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where the second line uses the upper bound (18) with n= 0. This implies that
∫∞
0

eωγt(ω)dω <
∞. Therefore, one can conclude that the density of wealth, gt(w) = γt(lnw)/w, exists, is in
C∞, is positive everywhere, and has finite mean.

Step 2—Law of motion of the average wealth in the top percentile. I now relate the law of
motion of the average wealth in the top percentile, dwPt, to the law of motion of the wealth den-
sity, dgt. Since gt is positive everywhere, the function q→

∫∞
q

gt(w)dw is strictly decreasing,
so there is a unique quantile qt associated with the top percentile p, which is defined implicitly
by

p=

∫ ∞

qt

gt(w)dw. (20)

Differentiating (20) with respect to time gives the law of motion of the top quantile:47

0 =

∫ ∞

qt

dgt(w)dw− gt(qt)dqt (21)

We can use this expression to obtain the law of motion of the total wealth in the top percentile:

d

(∫ ∞

qt

wgt(w)dw

)
=

∫ ∞

qt

wdgt(w)dw− qtgt(qt)dqt

=

∫ ∞

qt

(w− qt)dgt(w)dw. (22)

This equation formalizes the core intuition of the accounting framework (2): individuals enter-
ing the top percentile increase total wealth in the top percentile by the difference between their
wealth and the wealth of the individual they displace, qt.

Step 3—Integrating by parts the Kolmogorov forward Equation. I now use the Kolmogorov
forward equation to substitute dgt by the drift and volatility of wealth in (22):

dgt(w) =−∂w(µt(w)wgt(w))dt+
1

2
∂2
w(ν

2
t (w)w

2gt(w))dt.

Plugging it into (22) gives

d

(∫ ∞

qt

wgt(w)dw

)
=

∫ ∞

qt

(w−qt)

(
−∂w(µt(w)wgt(w))dt+

1

2
∂2
w(ν

2
t (w)w

2gt(w))dt

)
dw.

Integrating by parts gives:

d

(∫ ∞

qt

wgt(w)dw

)
=
[
(w− qt)µt(w)wgt(w)

]∞
qt
dt− 1

2

[
(w− qt)∂w(ν

2
t (w)w

2gt(w))
]∞
qt
dt

+

(∫ ∞

qt

µt(w)wgt(w)dw

)
dt+

1

2
νt(qt)

2q2t gt(qt)dt. (23)

47The dominated convergence theorem ensures that we can differentiate with respect to time under the integral —
(17) implies that, over a finite time period, ∂tgt(w) (as well as w∂tgt(w)) is uniformly dominated by an integrable
function.
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Note that w2gt(w)→ 0 and w∂ww
2gt(w)→ 0 as w→∞ since the mean of the wealth distri-

bution is finite and µt(.) and νt(.) are bounded. Therefore, Equation (23) simplifies to:

d

(∫ ∞

qt

wgt(w)dw

)
=

(∫ ∞

qt

µt(w)wgt(w)dw

)
dt+

1

2
νt(qt)

2q2t gt(qt)dt. (24)

Dividing (24) by
∫∞
qt

wgt(w)dw gives (4).
Step 4— Limit of the accounting framework as the time period tends to zero. I now show

that, as the time period tends to zero, the within and between terms defined in the accounting
framework (1) converge to the respective terms in (4). Between t and t+∆t, the within term
in (1) corresponds to

Within =
1

pwPt

∫ ∞

log qt

(∫
R
eω

′
πt→t+∆t(ω,ω

′)dω′
)
γt(ω)dω− 1. (25)

Differentiating this expression with respect to ∆t at ∆t= 0 gives the within term in (4). The
expression for the derivative of the between term is obtained as a residual. Q.E.D.

PROOF OF PROPOSITION 3: I follow the steps of the proof of Proposition 2, with the key
difference that the composition of individuals in the economy now changes over time.

Step 1— Existence, smoothness, and upper bounds for the wealth density. Let ωit = ln(wit)
be log wealth. Applying Ito’s lemma, the law of motion of ωit is given by

dωit =

(
µt (e

ωit)− 1

2
νt (e

ωit)2
)
dt+ νt (e

ωit)dBit.

Denote πs→t(ωs, ωt) the transition density of log wealth between s and t and denote γBt(ω) =
eωgBt(e

ω) the density of arriving agents at time t. We have γ0(ω) = eωg0(e
ω) and

γt(ω) =

∫ t

0

(δs + ηs)e
−
∫ t
s (δu+ηu) du

(∫
R
γBs(ω

′)πs→t(ω
′, ω)dω′

)
ds

+ e−
∫ t
0 (δu+ηu) du

∫
R
γ0(ω0)π0→t(ω0, ω)dω0

for t ≥ 0. Following the same steps as in the proof of Proposition 2, one can show that the
density γt is positive everywhere, infinitely differentiable, with

∫
R e

ωγt(ω)dω <∞.
Step 2—Law of motion of average wealth in the top percentile. This step is similar to the

proof of Proposition 2, and Equation (22) is unchanged.
Step 3-Integrating by parts the Kolmogorov forward Equation. In the presence of demo-

graphic changes, the Kolmogorov forward equation is

dgt(w) =−∂w(µt(w)wgt(w))dt+
1

2
∂2
w(ν

2
t (w)w

2gt(w))dt+ (δt + ηt) (gBt(w)− gt(w))dt.

Plugging this equation into (22) and integrating by parts gives

d

(∫ ∞

qt

wgt(w)dw

)
=

(∫ ∞

qt

µt(w)wgt(w)dw

)
dt+

1

2
νt(qt)

2q2t gt(qt)dt

+

(∫ ∞

qt

(w− qt)(gBt(w)− gt(w))dw

)
(δt + ηt)dt
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Dividing by
∫∞
qt

wgt(w)dw gives (9).
Step 4— Limit of the accounting framework as the time period tends to zero. I now show

that, as the time period tends to zero, the within, between, and demography terms defined in
the accounting framework (2) converge to the respective terms in (9). Between t and t+∆t,
the terms defined in the accounting framework correspond to

Within =
1

pwPt

∫ ∞

log qt

(∫
R
eω

′
πt→t+∆t(ω,ω

′)dω′
)
γt(ω)dω− 1,

Birth =

∫ t+∆t

t

e−
∫ t+∆t
s (δu+ηu) du(δs + ηs)

×
(

1

pwPt

∫
R

(∫
R
max

(
eω

′ − qt+∆t,0
)
πs→t+∆t(ω,ω

′)dω′
)
γBs(ω)dω

)
ds,

Death =−
(
1− e−

∫ t+∆t
t δs ds

)
e−

∫ t+∆t
t ηs ds (1 + Within)wPt − qt+∆t

wPt

,

Pop. Growth =−
(
1− e−

∫ t+∆t
t ηs ds

) (1 + Within)wPt − qt+∆t

wPt

.

Differentiating with respect to ∆t at ∆t = 0 gives the within, birth, death, and population
growth terms defined in (9). The between term is obtained as a residual. Q.E.D.

PROOF OF LEMMA 4: I first express the average time Tw(wit) by backward induction be-
tween t and t+∆t, where ∆t is a short time period:

Tw(wit) = δ∆t× 0 + (1− δ∆t)× (∆t+Et[Tw(wit+∆t)]).

Rearranging terms gives

0 = (1− δ∆t)(∆t+Et[Tw(wit+∆t)− Tw(wit)])− Tw(wit)δ∆t.

Keeping only terms at the first order in ∆t gives the following expression for Tw(wit):

0 = dt+Et[dTw(wit)]− Tw(wit)δ dt.

Applying Ito’s lemma gives the ordinary differential equation (ODE) satisfied by Tw:

1 + T ′
w(w)wµ+

1

2
T ′′
w(w)w

2ν2 − Tw(w)δ = 0.

The solution of this ODE has the general form:

Tw(w) = c1w
λ1 + c2w

λ2 +
1

δ
, (26)

where λ1 and λ2 are, respectively, the positive and negative roots of the quadratic equation
µλ+ 1/2λ(λ− 1)ν2 − δ.48 We have the following limit conditions:

Tw(w) = 0,

48This function is convex, converges to infinity as x converges to infinity, and equals −δ in zero; therefore there
are exactly two zeros for this function, one negative and one positive.
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lim
w→+∞

Tw(w) =
1

δ
.

This imposes c1 = 0 and c2 =−1/(δqλ2). Therefore, the solution of the ODE is

Tw(w) =
1

δ

(
1−

(
w

w

)λ2
)
.

which gives (14) after defining ξ =−λ2. Q.E.D.

PROOF OF PROPOSITION 5: Since the wealth distribution is Pareto, (15) becomes:

T =
1

δ

1−

∫ ∞

q

(w/q)−ξw−ζ−1 dw∫ ∞

q

w−ζ−1 dw


=

1

δ

(
1− ζ

ζ − ξ

)
,

which gives (16).
The derivative of T with respect to the idiosyncratic variance of wealth, ν2, is

∂ν2T =−1

δ

(
1 +

ζ

ξ

)−2

∂ν2

(
ζ

ξ

)
=

1

δ

(
1 +

ζ

ξ

)−2
ζ

ξ

(
∂ν2ξ

ξ
− ∂ν2ζ

ζ

)
.

As ν2 increases, T decreases as long as the relative decrease of ξ is higher than the relative
decrease of ζ . Q.E.D.

APPENDIX B: DECOMPOSING LOGARITHMIC GROWTH

Proposition 1 gives an accounting decomposition for the arithmetic growth of the average
wealth in the top percentile. As a corollary, I now derive a decomposition for the logarithmic
growth of the average wealth in the top percentile. Starting from Proposition 1, I first write the
gross growth of the average wealth in a top percentile as a product of three terms:

wP1,1

wP0,0

=

(
wP0\D,1

wP0\D,0

)(
1 +

nI(wI,1 − q1) + nO(q1 −wO,1)

nP0\DwP0\D,1 + nBwB,1 + (nI − nO)q1

)

×

1+
nB(wB,1 − q1)− nD

(
wP0\D,1

wP0\D,0
wD,0 − q1

)
− (1− nP0

)
(

wP0\D,1

wP0\D,0
wP0,0 − q1

)
wP0\D,1

wP0\D,0
wP0,0


Taking logarithms gives an accounting framework for the logarithmic growth of the average
wealth in a top percentile:
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log

(
wP1,1

wP0,0

)
= log

(
wP0\D,1

wP0\D,0

)
+ log

(
1 +

nI(wI,1 − q1) + nO(q1 −wO,1)

nP0\DwP0\D,1 + nBwB,1 + (nI − nO)q1

)

+ log

1+
nB(wB,1 − q1)− nD

(
wP0\D,1

wP0\D,0
wD,0 − q1

)
− (1− nP0

)
(

wP0\D,1

wP0\D,0
wP0,0 − q1

)
wP0\D,1

wP0\D,0
wP0,0

 .

The first term (within) is the logarithmic growth of the average wealth of individuals initially in
the top percentile. The second term (between) is the log ratio between the average wealth in the
top at time t= 1 and its counterfactual value after setting the wealth of individuals in I and O
to q1. The third term (demography) is the log ratio between this last value and the counterfactual
average wealth in the top at time t= 1 in the absence of any composition change.

While this logarithmic decomposition looks slightly more complex, it has two useful prop-
erties. First, since logarithmic growth rates are time additive, one can exactly aggregate the
results of the accounting framework across successive time periods to decompose the cumu-
lative growth of the average wealth in the top percentile into the sum of a cumulative within,
between, and demography terms. Second, normalizing wealth by the average wealth in the
economy in the logarithmic decomposition (e.g., to decompose top wealth shares) is exactly
equivalent to adjusting the within term by the logarithmic growth of the average wealth in the
economy. These two properties only hold approximately in the arithmetic decomposition.49

Still, over a short horizon (e.g. a year), both decompositions give very similar results quanti-
tatively. Due to its relative simplicity, I focus on the arithmetic decomposition in my empirical
applications.

APPENDIX C: EXTENSIONS

The key proposition of the paper is Proposition 2, which gives the dynamics of the average
wealth in a top percentile in terms of the dynamics of individual wealth. While this proposition
assumes that individual wealth follows a Markov diffusion, I now consider three extensions
that allow for more general wealth dynamics.

C.1. Type Heterogeneity

The main text assumes that the drift and volatility of wealth only depend on the wealth
level. In reality, individuals with similar wealth may have different wealth dynamics due to
heterogeneous portfolios or heterogeneous consumption rates. To model this heterogeneity in
a parsimonious way, I assume that individuals are split in J ≥ 1 groups. The law of motion of
the wealth for individual i in group 1≤ j ≤ J is

dwit

wit

= µjt(wit)dt+ νjt(wit)dBit, (27)

where µjt(.) and νjt(.) are group specific drift and volatility that satisfy the regularity con-
ditions of Section 3. Individuals transition between the different groups 1 ≤ j ≤ J with an
arbitrary Markov transition matrix. Denote gt = (g1t, . . . , gJt) the joint density of wealth w
and type j at time t.

49In particular, the geometric mean of the arithmetic growth of the average wealth in the top percentile is only
approximately equal to the sum of the geometric mean of the within, between, and demography terms.
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PROPOSITION 6: Assume that individual wealth follows the diffusion process (27). The av-
erage wealth in the top percentile wPt follows the law of motion:

dwPt

wPt

=Egt(·)· [µjt(w) |w ≥ qt] dt︸ ︷︷ ︸
Within

+
1

2

gt(qt)q
2
t

pwPt

Egt
[
νjt(w)

2 |w = qt
]
dt︸ ︷︷ ︸

Between

,

where Egt(·)· denotes the wealth-weighted expectation with respect to the wealth density gt.

The expressions for the within and between terms are essentially the same as in the baseline
model. The within term simply depends on the wealth-weighted average drift of individuals in
the top percentile, while the between term depends on the average idiosyncratic volatility at
the top percentile threshold. Note that drift heterogeneity does not appear in the between term:
this comes from the fact that, during a short period of time ∆t, the cross-sectional variance of
wealth growth due to heterogeneous drifts is in ∆t2, rather than ∆t.

PROOF OF PROPOSITION 6: Denote µt(w) = (µjt(w))1≤j≤J the vector of drifts for each
type. Similarly, denote νt(w) = (νjt(w))1≤j≤J the vector of idiosyncratic volatilities for each
type. The Kolmogorov forward equation for gt is

dgt(w) =−∂w(µt(w)w · gt(w))dt+
1

2
∂2
w (νt(w)w · νt(w)w · gt(w))dt+T′gt(w)dt,

where · denotes the element-wise product and T denotes the Markov transition matrix across
the groups.

Denote gt =
∑J

j=1 gjt the overall wealth density at time t. Using the previous equation, the
law of motion of the overall wealth density is:

dgt(w) =−∂w ((µt(w)w)
′gt(w))dt+

1

2
∂2
w ((νt(w)w · νt(w)w)

′gt(w))dt.

As in the proof of Proposition 2, we can plug this equation into (22) and integrate by parts to
obtain

d

(∫ ∞

qt

wgt(w)dw

)
=

(∫ ∞

qt

(µt(w)w)
′gt(w)dw

)
dt+

1

2
(νt(qt)qt · νt(qt)qt)

′ gt(qt)dt.

Dividing by
∫∞
qt

wgt(w)dw gives the result. Q.E.D.

C.2. Aggregate Shocks.

The main text assumes that wealth shocks are purely idiosyncratic. In reality, individuals are
also differently exposed to aggregate shocks.50. To model this heterogeneity in a parsimonious
way, I assume that the law of motion of the wealth for individual i in group 1≤ j ≤ J is

dwit

wit

= µjt(wit)dt+ σjt(wit)dZt + νjt(wit)dBit, (28)

50See, for instance, Di Tella (2016) or Wolff (2002)
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where Zt is an aggregate Brownian motion and, for any 1≤ j ≤ J , µjt(.), σjt(.), νjt(.) satisfy
the regularity conditions given in Section 3.51

In this case, the distribution of wealth is stochastic. While the mathematics involved in keep-
ing track of a stochastic distribution are more involved (see, e.g., Carmona and Delarue (2018)),
I still derive informally the law of motion of the average wealth in the top percentile. As above,
denote gt the joint density of wealth and type at time t.

PROPOSITION 7: Assuming that individual wealth follows the diffusion process (28), the
average wealth in the top percentile wPt follows the law of motion:

dwPt

wPt

=Egt(·)· [µjt(w) |w ≥ qt] dt+Egt(·)· [σjt(w) |w ≥ qt] dZt︸ ︷︷ ︸
Within

+
1

2

gt(qt)q
2
t

pwPt

(
Egt [νjt(w)

2 |w = qt] + Vargt [σjt(w) |w = qt]
)
dt︸ ︷︷ ︸

Between

,

where Egt(·)· (resp. Vargt ) denotes the wealth-weighted expectation (resp. variance) with re-
spect to the density gt.

Heterogeneous exposure to aggregate shocks affects both the within term and the between
term. The within term now loads on the aggregate Brownian motion: the exposure of the aver-
age wealth is given by the wealth-weighted exposure of individuals in the top percentile. More
interestingly, the between term now depends not only on the average idiosyncratic volatility of
individuals at the percentile threshold but also on the variance of their exposures to aggregate
risks. Intuitively, both terms contribute to the cross-sectional variance of wealth growth at the
percentile threshold.

PROOF OF PROPOSITION 7: I follow the same steps as in the proof of Proposition 2, with
the key difference that the wealth density is now stochastic. As discussed in the text, the proof
is only informal.

I start by rederiving the law of motion of the quantile qt in the presence of aggregate risk.
Applying Ito’s lemma on the implicit definition of the quantile (20) gives

0 =

∫ ∞

qt

dgt(w)dw− gt(qt)dqt − σ[dgt(qt)]
2 dt,

where σ[dgt(qt)] denote the exposure of gt(qt) to aggregate shocks. Applying Ito’s lemma
gives the law of motion of the total wealth in the top percentile:

d

(∫ ∞

qt

wgt(w)dw

)
=

∫ ∞

qt

wdgt(w)dw−qtgt(qt)dqt−qtσ[dgt(qt)]
2 dt− 1

2
gt(qt)σ[dqt]

2 dt.

Combining these two equations gives

d

(∫ ∞

qt

wgt(w)dw

)
=

∫ ∞

qt

(w− qt)dgt(w)dw− 1

2
gt(qt)σ[dqt]

2 dt

51At the cost of more cumbersome notations, these expressions can be easily extended to the case in which Zt is a
multi-dimensional Brownian to model (i.e., heterogeneous exposure to multiple aggregate shocks, such as industry-
specific shocks).
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=

∫ ∞

qt

(w− qt)dgt(w)dw− 1

2

1

gt(qt)

(∫ ∞

qt

σ[dgt(w)] dw

)2

dt. (29)

Denote σt(w) = (σjt(w))1≤j≤J the vector giving the aggregate exposures of each type. As
shown in Kurtz and Xiong (1999) and Carmona and Delarue (2018), in the presence of aggre-
gate risk, the wealth density evolves as

dgt(w) =−∂w(µt(w)w · gt(w))dt− ∂w(σt(w)w · gt(w))dZt

+
1

2
∂2
w ((νt(w)w · νt(w)w+σt(w)w ·σt(w)w) · gt(w))dt+T′gt(w)dt.

Therefore, the law of motion of the overall wealth density, gt, is

dgt(w) =−∂w ((µt(w)w)
′gt(w))dt− ∂w ((σt(w)w)

′gt(w))dZt

+
1

2
∂2
w ((νt(w)w · νt(w)w+σt(w)w ·σt(w)w)

′gt(w))dt.

Plugging this equation into (29) and integrating by parts gives

d

(∫ ∞

qt

wgt(w)dw

)
=

(∫ ∞

qt

(µt(w)w)
′gt(w)dw

)
dt+

(∫ ∞

qt

(σt(w)w)
′gt(w)dw

)
dZt

+
1

2
q2t (νt(qt) · νt(qt) +σt(qt) ·σt(qt))

′ gt(qt)dt

− 1

2

1

gt(qt)
q2t (σt(qt)

′gt(qt))
2
dt.

Dividing by
∫∞
qt

wgt(w)dw gives the result. Q.E.D.

C.3. Jump-Diffusion

The main text assumes that wealth follows a diffusion model. I now consider the more gen-
eral case in which the wealth process follows a jump-diffusion model.52 Formally, I assume
that wealth follows the law of motion:

dwit

wit-
= µt(wit-)dt+ νt(wit-)dBit

+
(
eϕt(wit-)Ui − 1

)
dNit −EU

[
eϕt(wit-)Ui − 1

]
λdt,

(30)

where Nit is a compound Poisson process with intensity λ and Ui is a bounded random variable
with density fU . The function ϕt allows the effective log sizes of jumps, ϕt(w)Ui, to depend on
wealth w and time t. Without loss of generality, I compensate the compound Poisson process by
EU

[
eϕt(wit-)Ui − 1

]
λ, where EU denotes the expectation with respect to the random variable

U , so that µt(w) still corresponds to the instantaneous expected growth rate of wealth.
I assume the same regularity conditions for µt and νt as in Section 3, with the additional

assumptions that (i) ϕt is positive, (ii) ϕt(exp(.)) possesses bounded derivatives of all orders

52A large literature in finance argues for the presence of jumps in asset prices, which would imply jumps in
individual wealth (e.g., Ait-Sahalia (2004), Barro and Ursúa (2012)).
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and (iii) the resulting wealth density is smooth enough, that is, gt ∈ C∞, and, over a finite time
period, w∂tgt(w) is uniformly dominated by an integrable function.53,54

PROPOSITION 8: Assuming that wealth follows the jump-diffusion process (28), the average
wealth in the top percentile wPt follows the law of motion:55

dwPt

wPt

=Egt(·)· [µt(w)|w ≥ qt] dt︸ ︷︷ ︸
Within

+
1

2

gt(qt)q
2
t

pwPt

νt(qt)
2 dt︸ ︷︷ ︸

Between (Diffusion Part)

+
1

pwPt

EU

[∫ qt

0

(eϕt(w)Uw− qt)
+gt(w)dw+

∫ ∞

qt

(qt − eϕt(w)Uw)+gt(w)dw

]
λdt︸ ︷︷ ︸

Between (Jump Part)

. (31)

In the presence of jumps, the between term is the sum of two terms: the first term is due to
the diffusive part of the process (i.e., the Brownian motion Bit) while the second term is due
to the jump part of the process (i.e., the compound Poisson process Nit). The jump part is the
sum of an inflow term and an outflow term, which correspond, respectively, to the contribution
of positive and negative jumps on the law of motion of the average wealth in the top percentile.
In contrast with the term due to the diffusion part of the process, the jump term depends on the
density of wealth and on the distribution of jump sizes across the whole distribution, not just
at the percentile threshold. This reflects the fact that, during an infinitesimal period of time dt,
individuals can now enter the top percentile from any part of the wealth distribution.

PROOF OF PROPOSITION 8: I follow the same steps as in the proof of Proposition 2. The
Kolmogorov forward equation associated with the process (30) is:

dgt(w) =−∂w(µt(w)wgt(w))dt+
1

2
∂2
w

(
ν2
t (w)w

2gt(w)
)
dt

+

(∫ ∞

0

1

ϕt(w
′)w

fU

(
log (w/w′)

ϕt(w
′)

)
gt(w

′)dw′ − gt(w)

+ ∂w

(
EU

[
eϕt(w)U − 1

]
wgt(w)

))
λdt.

Plugging this into (22) and integrating by parts gives

d

(∫ ∞

qt

wgt(w)dw

)
=

(∫ ∞

qt

µ(w)wgt(w)dw

)
dt+

1

2
gt(qt)q

2
t νt(qt)

2 dt

+

(∫ ∞

qt

(w− qt)

(∫ ∞

0

1

ϕt(w
′)w

fU

(
log (w/w′)

ϕt(w
′)

)
gt(w

′)dw′ − gt(w)

)
dw

53That is, for any finite time T > 0, there exists fT such that
∫
R+

fT (w)dw < ∞, and for any t < T ,
w∂tgt(w)≤ fT (w). As in the proof of Proposition 2, this will be needed to use the dominated convergence theorem
to relate the law of motion of wPt to the law of motion of the wealth density gt.

54While I believe it to be a consequence of the other assumptions, I could not find a proof in the existing literature.
The closest paper is Cass (2006), which examines the case of a time-homogeneous process.

55Here, and elsewhere, “x+” denotes the positive part of x; that is, x+ =max(x,0).
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−
∫ ∞

qt

EU

[
eϕt(w)U − 1

]
wgt(w)dw

)
λdt.

The last term, due to jumps, can be rewritten as follows:

EU

[∫ ∞

0

(
eϕt(w

′)Uw′ − qt

)+

gt(w
′)dw′ −

∫ ∞

qt

(
eϕ(w)Uw− qt

)
gt(w)dw

]
λdt

=EU

[∫ qt

0

(
eϕt(w)Uw− qt

)+
gt(w)dw+

∫ ∞

qt

(
qt − eϕt(w)Uw

)+
gt(w)dw

]
λdt.

Dividing by
∫∞
qt

wgt(w)dw gives the result. Q.E.D.

Higher-Order Cumulants. When the distribution of jumps is regular enough, the between
term can be rewritten as a Taylor expansion of the wealth density and jump sizes around the
percentile threshold.

Formally, for n ≥ 2, denote κnt(w) the “instantaneous” cumulant of (log) wealth growth,
defined as the n-th derivative of the instantaneous cumulant generating function:

κnt(w) = ∂τ∂
n
θ logEt

[
e
θ log

(wit+τ
wit-

)
|wit- =w

] ∣∣∣∣
θ=0,τ=0

.

An application of Ito’s lemma, combined with (30), gives the following expression for the
instantaneous cumulants:

κnt(w) =

{
νt(w)

2 + λϕt(w)
2EU [U2] for n= 2,

λϕt(w)
nEU [Un] for n > 2.

(32)

The second cumulant (i.e., the instantaneous variance) is the sum of a term due to the diffusive
part of the process, νt(w)2, and a term that depends on the second moment of the random
variable U . For n > 2, the instantaneous cumulant of order n depends on the n-th moment of
the random variable U . When the process follows a diffusion (i.e., λ = 0), all cumulants of
order higher than two are zero.

Assuming that the function v →
∫ qt

qte−v(e
vw − qt)

1
ϕt(w)

fU(
J

ϕt(w)
)gt(w)dw is analytic, the

between term can be rewritten as a sum of all higher-order cumulants:

COROLLARY 9: Assuming that wealth follows the jump-diffusion process (30), the average
wealth in the top percentile wPt follows the law of motion:

dwPt

wPt

=Egt(·)· [µt(w)|w ≥ qt] dt︸ ︷︷ ︸
Within

+

∞∑
n=2

1

n!

qt
pwPt

n−2∑
m=0

(−w∂w)
m (κnt(w)wgt(w)) |w=qt dt︸ ︷︷ ︸

Between

.

(33)

This says that the between term can be re-expressed as an infinite series of terms, where the
term of order n depends on the n-th cumulant of (log) wealth growth κnt.

The first term, 1/2(gt(qt)q
2
t /pwPt)κ2t(qt), captures the contribution of the variance of (log)

wealth growth. It is similar to the term obtained for a diffusion process, with the only difference
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that κ2t(qt) now reflects the total variance of (log) wealth growth at the percentile threshold,
which also depends on the intensity and distribution of jumps, as seen in Equation (32).

When the wealth process follows a diffusion, cumulants of order n > 2 are zero, and there-
fore terms of order n > 2 are equal to zero.

Note that the term of order n also depends on the first n − 2 derivatives of the cumulant
κnt and of the wealth density gt around the percentile threshold. Intuitively, higher-order terms
reflect the contribution of large wealth realizations, which depend on the wealth density as well
as on the distribution of jump sizes far from the percentile threshold.

Stationary Case. As in the diffusion model, the between term takes a particularly simple
form when the wealth distribution has a Pareto tail. Assume that µt(w) = µ(w), νt(w) = ν(w),
and ϕt(w) = ϕ(w), with µ(w)→ µ < 0, ν(w)→ ν, and ϕ(w)→ ϕ as w →∞. Under these
assumptions, the stationary distribution, if it exists, has a Pareto tail with Pareto exponent ζ > 1.

For a distribution with a Pareto tail, we have, as p→ 0,

1

pwP
EU

[∫ q

0

(
eϕ(w)Uw− q

)+
g(w)dw

]
→ EU

[(
eζϕU − 1

ζ
−
(
eϕU − 1

))
1U≥0

]
,

and

1

pwP
EU

[∫ ∞

q

(
q− eϕ(w)U

)+
g(w)dw

]
→ EU

[(
eζϕU − 1

ζ
−
(
eϕU − 1

))
1U≤0

]
.

Therefore, taking the limit p → 0 in Proposition 8 gives a simple balance equation for top
wealth shares:

0 = µdt︸︷︷︸
Within

+
ζ − 1

2
ν2 dt+EU

[
1

ζ

(
eζϕU − 1

)
−
(
eϕU − 1

)]
λdt︸ ︷︷ ︸

Between

.

Using a Taylor series for x→ exϕU around x= 0 gives

0 = µdt︸︷︷︸
Within

+
∞∑

n=2

ζn−1 − 1

n!
κn dt︸ ︷︷ ︸

Between

. (34)

where κn denotes the limit of the cumulant of order n in the right tail of the wealth distribution;
that is,

κn =

{
ν2 + λϕ2EU [U2] for n= 2,

λϕnEU [Un] for n > 2.

Alternatively, one could obtain Equation (34) by taking the limit p→ 0 in Corollary 9.

PROOF OF COROLLARY 9: Using the change of variable J = ϕt(w)U , one can rewrite the
between term due to jump in (31) as

1

pwPt

(∫
J

(∫ qt

0

(eJw− qt)
+ 1

ϕt(w)
fU

(
J

ϕt(w)

)
g(w)dw
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+

∫ ∞

qt

(qt − eJw)+
1

ϕt(w)
fU

(
J

ϕt(w)

)
g(w)dw

)
dJ

)
λdt

=
1

pwPt

(∫
J

∫ qt

qte−J

(eJw− qt)
1

ϕt(w)
fU

(
J

ϕt(w)

)
gt(w)dwdJ

)
λdt

Assuming that the function v→
∫ qt

qte−v(e
vw− qt)

1
ϕt(w)

fU(
J

ϕt(w)
)gt(w)dw is analytic, we can

rewrite the expression as follows:

1

pwPt

(∫
J

∞∑
n=2

1

n!
∂n
v

(∫ qt

qte−v

(evw− qt)
1

ϕt(w)
fU

(
J

ϕt(w)

)
gt(w)dw

)∣∣∣
v=0

Jn dJ

)
λdt

=
1

pwPt

( ∞∑
n=2

1

n!
∂n
v

(∫ qt

qte−v

(evw− qt)

(∫
J

Jn 1

ϕt(w)
fU

(
J

ϕt(w)

)
dJ

)
gt(w)dw

)∣∣∣
v=0

)
λdt

=
1

pwPt

∞∑
n=2

1

n!
∂n
v

(∫ qt

qte−v

(evw− qt)

(∫
U

λϕt(w)
nUnfU(U)dU

)
gt(w)dw

)∣∣∣
v=0

dt

=
1

pwPt

∞∑
n=2

1

n!
∂n
v

(∫ qt

qte−v

(evw− qt) (λϕt(w)
nEU [U

n])gt(w)dw

)∣∣∣
v=0

dt.

Plugging this equality into the law of motion of wPt (31), and using the definition of cumulants
(32), we obtain

dwPt

wPt

=Egt(·)· [µt(w)|w ≥ qt] dt+
1

pwPt

∞∑
n=2

1

n!
∂n
v

(∫ qt

qte−v

(evw− qt)κnt(w)gt(w)dw

)∣∣∣
v=0

dt

=Egt(·)· [µt(w)|w ≥ qt] dt+
1

pwPt

∞∑
n=2

1

n!
∂n−1
v

(∫ qt

qte−v

evwκnt(w)gt(w)dw

)∣∣∣
v=0

dt

=Egt(·)· [µt(w)|w ≥ qt] dt+
qt

pwPt

∞∑
n=2

1

n!

n−2∑
m=0

(−w∂w)
m (κnt(w)wgt(w)) |w=qt dt.

Q.E.D.
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Supplement to “Decomposing the Growth of Top Wealth Shares”

APPENDIX D: EMPIRICAL APPENDIX ON FORBES 400

D.1. Autocorrelogram

Figure D.1 plots the serial correlation of the within, between, and demography terms. Each
term has different patterns. The within term is serially uncorrelated, which reflects the fact that
stock market returns are approximately uncorrelated over time. The between term is positively
correlated over time, with an AR(1) structure, which reflects the fact that the dispersion of
wealth growth among top households tends to be serially correlated over time (as seen in Figure
4a). Finally, the demography term is negatively correlated at the one year horizon, with a MA(1)
structure, which reflects the fact that the fraction of top households that die in a given year
tends to be negativelly correlated over time. Intuitively, a higher number of death in a given
year implies fewer death in the following year, as the remaining population is younger.

FIGURE D.1.—Autocorrelogram for the Within, Between and Demography Terms in the Forbes 400 a
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aThe figure plots the autocorrelation for the within, between, and demography terms obtained by applying the accounting framework (2)
on the growth of the Forbes 400 wealth share. The dashed lines represent the 95% confidence bands corresponding to the null hypothesis of
no correlation. Data are from Forbes and the Financial Accounts of the United States.

D.2. Measuring the Wealth of Drop-Offs

The decomposition in Section 2 requires knowing the wealth of households that drop off
the top percentile. However, before 2012, Forbes only rarely reported the wealth of individuals
who dropped out from the top 400. First, 70% of households that drop off the top percentile
actually stay in the Forbes 400. Indeed, the top percentile used in this paper is composed of
only 264 households in 1983 (it was chosen so that, with population growth, it includes 400
households in 2017). Because wealth is so concentrated in the top, there is usually a great
difference between the last individual in this top percentile and the wealth of the last individual
in the top 400. Therefore, most households that drop off this top percentile stay in the top 400.

I now focus on the remaining 30% of households that drop off the Forbes 400. Formally, the
problem boils down to estimating the average of a variable (the wealth growth of top house-
holds) that is left censored. In this particular setting, the Kaplan and Meier (1958) estimator
gives tight bounds to estimate this quantity. The idea is to estimate the average growth rate
of drop-offs using the observed negative growth rates of households in the top percentile. The
identifying assumption is that the distribution of growth rates is homogeneous for households
within the top percentile.
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More precisely, the Kaplan and Meier (1958) method is to first estimate the survival func-
tion, that is, in my setting the probability that wealth growth is lower than a certain thresh-
old P((wit+1 − wit)/wit ≤ x). This survival function can then be used to estimate the ex-
pectation of wealth growth conditional on being lower than a certain threshold, that is,
E[(wit+1 −wit)/wit|(wit+1 −wit)/wit ≤ x].

I check the validity of this imputation method by focusing on years where Forbes reports the
wealth of drop-offs (i.e., 2012-2017). In these years, I compare the result obtained from the
estimated method and the result obtained using the real wealth of drop-offs. Table D.I shows
the average return of these drop-offs using the imputed method and the actual data reported by
wealth. The estimates differ by only 2 percentage points, on average (−26% versus −28%).
The fact that the Kaplan-Meier estimator gives such a good result is intuitive: because wealth
is so concentrated, households at the very top of the wealth distribution hold ten times more
wealth than the households at the percentile threshold, and therefore I actually observe a large
part of the distribution of negative wealth shocks.

The last four columns report the estimates for the within and between terms using imputed
and real data. The estimates differ by 5 basis points. The bias is small because, as discussed
above, the Kaplan-Meier method provides accurate estimates of the wealth growth of imputed
households. Moreover, the wealth share represented by the imputed households is small to
begin with.

I use the same method to impute the second, third, and fourth order of wealth to obtain the
estimate of standard deviation, skewness, and excess kurtosis reported in Table IIa.

TABLE D.I

EFFECT OF USING IMPUTED VERSUS REPORTED WEALTH OF DROP-OFFS ON DECOMPOSITIONa

Year Average Wealth Growth of Drop-Offs (%) Within (%) Between (%)

Imputed Actual Imputed Actual Imputed Actual

2011-2012 −33.56 −36.48 7.75 7.70 1.22 1.26
2012-2013 −27.34 −29.82 6.77 6.73 1.13 1.17
2013-2014 −23.82 −19.35 2.36 2.44 1.69 1.61
2014-2015 −26.44 −30.28 −2.99 −3.08 1.34 1.42
2015-2016 −26.46 −32.53 3.29 3.15 1.33 1.46
2016-2017 −16.97 −19.14 1.49 1.44 1.61 1.65

2011-2017 −25.93 −28.22 3.05 3.00 1.38 1.43

aThe table compares the within and the between terms (defined in (2)) using imputed data and actual data about the wealth of drop-offs.
Starting from 2011, Forbes systematically reports the wealth of all drop-offs. For these years, one can compare the results of the accounting
framework using this reported data as opposed to the imputation using Kaplan and Meier (1958). All terms in percentage. Data are from Forbes
and the Financial Accounts of the United States.

D.3. Assessing the Importance of Measurement Error in Wealth

How does transitory measurement errors in wealth affect the accounting framework? Sup-
pose that wealth follows a simple diffusion process with drift µ and volatility ν. Moreover,
suppose that wealth is only observed every year, and only with some errors; i.e., we only ob-
serve ŵit =wite

ϵit , where ϵit is an i.i.d process with E[eϵit ] = 1.
The log change in observed wealth between t and t+ 1 can be written as

log

(
ŵit+1

ŵit

)
= µ+ ν(Bit+1 −Bit) + ϵit+1 − ϵit.



47

Denote ρ the slope coefficient in a regression on observed wealth growth on its lagged value.
We can relate ρ to the variance of measurement errors, Var(ϵit):

ρ=
cov(log(ŵit+1/ŵit), log(ŵit/ŵit−1))

Var(log(ŵit/ŵit−1))

=
cov(µ+ ν(Bit+1 −Bit) + ϵit+1 − ϵit, µ+ ν(Bit −Bit−1) + ϵit − ϵit−1)

Var(µ+ ν(Bit −Bit−1) + ϵit − ϵit−1)

=− Var(ϵit)
ν2 + 2Var(ϵit)

This equation makes it possible to recover the variance of measurement errors from the serial
correlation of log wealth growth. More precisely, Table D.II reports an estimate for ρ≈−0.01,
which implies Var(ϵit)/ν2 ≈ 1%.

Denote ̂Between the between term obtained by applying the accounting framework on ŵit

between t and t+ 1. Over a short time period, Proposition 2 says that the relative bias in the
between term is equal to the relative bias in the variance of log wealth growth:

̂Between − Between
Between

≈ 2Var(ϵit)/ν2

Overall, this exercise suggests that the relative bias in the between term is around 2%, which is
very small.

TABLE D.II

SERIAL CORRELATION OF WEALTH GROWTH IN THE FORBES 400a

Wealth Growth

(1)

Lagged Wealth Growth −0.01
(0.01)

Constant 0.05
(0.00)

R2 0.18
Period 1983-2016
FE Individual
N 11,392

aThe table shows the result of regressing future wealth growth on current wealth growth with individual fixed effects; that is, denoting
wit the wealth of household i at time t:

log

(
wit+1

wit

)
= αi + β log

(
wit

wit−1

)
+ ϵit+1.

Estimation is done via OLS. Standard errors are in parentheses and are estimated using Newey-West with three lags. Data are from Forbes.

APPENDIX E: DECOMPOSING THE GROWTH OF BILLIONAIRE’S SHARES IN RUSSIA
AND CHINA

I now compare the accounting decomposition obtained for the U.S. with other countries,
using Forbes’s list of international billionaires starting in 1987. One difficulty is that the number
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of billionaires in each country tends to be much smaller than in the U.S. Therefore, I restrict
myself to Russia and China, the two countries with the highest count of billionaires in 2010
outside the U.S.56 I consider the wealth share of the percentile composed of 50 billionaires in
2010. Since China counts less than 50 billionaires before 2010, I only look at the growth of this
wealth share in the 2010–2017 period.57

Another concern is that data quality may be lower for these two countries compared to the
U.S. In particular, the addition of a billionaire to the list may reflect the fact that Forbes be-
comes more familiar with the country over time, rather than a real change in the underlying
wealth distribution. To address this concern, I manually check that each new Chinese or Rus-
sian billionaire can be traced back to a particular event, such as a successful IPO or a high stock
market return; otherwise, I remove the household from the sample. Finally, data on per capita
household wealth in Russia and China are taken from the World Wealth and Income Database.

Table E.I shows the result of the accounting decomposition for these two countries as well as
the results of the U.S. for the same time period. Figure E.1a plots the average within, between,
and demography terms in each country over time as well as their standard errors. Wealth in-
equality increased in both countries: the yearly growth rate of the top share is 1.0% in China
and 8.0% in Russia. The average within term has a large standard error, which reflects the short
time window for the decomposition as well as the small number of households in each group.
In contrast, the between term is much more precisely estimated. As a consequence, in the rest
of the analysis, I focus on comparing the between term across countries.

The between term averages to 1.1% in Russia over the last ten years, which is roughly similar
to the average between term in the U.S. over the same time period. In contrast, the between
term averages to 4.2% in China, which is three times higher than the average between term
in the U.S. To better understand this difference, I compare the model-implied between term
1/2 · gt(qt)q2t /(pwPt) · νt(qt)2 in China, using the same methodology as the U.S. (see Figure
E.1b). This allows me to decompose the change between the between term in China and in the
U.S. as a sum of two factors:

∆

〈
1

2

gt(qt)q
2
t

pwPt

νt(qt)
2

〉
︸ ︷︷ ︸

2.7%

=

〈
1

2

gt(qt)q
2
t

pwPt

〉
∆
(
νt(qt)

2
)

︸ ︷︷ ︸
1.3%

+ ⟨νt(qt)2⟩∆
(
1

2

gt(qt)q
2
t

pwPt

)
︸ ︷︷ ︸

1.4%

,

where ∆x (resp. ⟨x⟩) denotes the difference (resp. average) of variable x between China and
the U.S. I find that the relatively high level of the between term in China comes from the
combination of two distinct forces. First, the standard deviation of (log) wealth growth among
top households is much higher in China compared to the U.S. Second, wealth inequality in
China is much lower to begin with, which makes it easier for households with high realized
growth rates to displace existing fortunes at the top.

APPENDIX F: DECOMPOSING THE GROWTH OF TOP INCOME SHARES

I now apply the accounting framework to decompose the growth of top income shares in
the U.S. The key difference with wealth is that income is a flow, not a stock. In particular,
transitory shocks play a much larger role in driving the dynamics of income in the short run,
even though they only play a small role in shaping the income distribution.58 The situation is

56For the sake of the exercise, I group together China, Hong Kong, and Taiwan.
57The evolution of wealth inequality in China and Russia has been also discussed in Novokmet et al. (2018) and

Piketty et al. (2019).
58See Heathcote et al. (2010) and Blundell et al. (2008).
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FIGURE E.1.—Decomposing the Annual Growth Rate of Billionaires’ Shares (2010-2017)a
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aFigure E.1a plots the average annual growth rate of the billionaires’ shares in the U.S., Russia, and China, as well as the within, between,
and demography terms defined in the accounting framework (2). The figure also plots the 95% confidence-interval for the average of each
quantity over the time period. Figure E.1b plots the average estimates of gt(qt)q2t /(pwPt) and νt(qt)

2 for these three countries. Data
are from Forbes and the World Wealth and Income Database.

similar to the measurement error problem discussed in Appendix D: while we would like to
do the decomposition on the permanent component of labor income, we only observe a noisy
version of it.

One simple way to adapt the accounting framework to top income shares is to apply the
decomposition on a more “permanent” measure of income: the average income received by
each individual averaged over a three year period.

I use the IRS public use panel files created by the Statistics of Income Division from 1979
to 1990. This dataset includes a random sub-sample of taxpayers who can be followed over
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TABLE E.I

DECOMPOSING THE GROWTH OF THE BILLIONAIRES’ WEALTH SHAREa

(a) Summary

Growth of Top Percentile Wealth Share

Total Within Between Demography

United States 3.1 3.1 1.4 −1.4
China 1.0 −2.5 4.2 −0.8
Russia 8.0 6.9 1.1 0.0

(b) Within

Within

Total Average Wealth Growth in Top Percentile −Growth Country Wealth per Capita

United States 3.1 8.1 −4.8
China −2.5 9.1 −11.9
Russia 6.9 2.9 3.8

(c) Between

Between

Total Inflow Outflow

Total nI
wI,1−q1

wP0,0
Total nO

q1−wO,1

wP0,0

United States 1.4 1.1 8.2 14 0.2 5.9 4
China 4.2 2.8 17.6 17 1.4 16.7 9
Russia 1.1 0.7 10.6 6 0.5 10.6 4

(d) Demography

Demography

Total Birth Death Population Growth

Total nB
wB,1−q1

wP0,0
Total nD

q1−
wP0\D,1

wP0\D,0

wD,0

wP0,0
Total 1−nP0

q1−
wP0\D,1

wP0\D,0

wP0,0

wP0,0

United States −1.4 0.3 0.3 78 −0.9 1.6 −56 −0.8 1.0 −74
China −0.8 0.1 0.6 21 −0.7 1.1 −63 −0.2 0.3 −62
Russia 0.0 0.0 0.0 — 0.0 0.0 — 0.0 0.0 —

a Table E.I reports the geometric mean of the growth rate of Billionaires’ shares as well its decomposition into a within, between, and
demography terms as defined in accounting framework (2). The within term is further decomposed into the growth of the average wealth of
households initially in the top percentile and the growth of the per capital wealth in each country (both expressed in real dollars). All terms in
percentage. Data are from Forbes, the Bureau of Economic Analysis, and the World Wealth and Income Database.

time between 1979 and 1990. Following Piketty and Saez (2003), I construct a comprehensive
measure of earnings, which includes wages, salary, and entrepreneurial income.59 I focus on tax
filers who file jointly — note that, in this context, birth and death represent taxpayers who start
or stop filing jointly. The sample contains 5,523 distinct taxpayers. Finally, I replace values

59More precisely, I construct earnings as adjusted growth income minus capital gain, dividend income, interest
income, rental income, and royalties.
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of income below the bottom 10% (in a given year) by the bottom 10% quantile. While this
winsorizing does not play an important role for the results of the accounting decomposition,
it helps making the distribution of log income growth closer to a normal distribution, and,
therefore, to obtain a better approximation by the diffusion model obtained in Section 3.

As mentioned earlier, I want to focus on the permanent component of income. To do so, I
average income over three-year periods before applying the accounting on the sample. I then
annualize each term to obtain yearly terms (i.e., dividing them by three). I find similar results
using a larger time period such as six years, which suggests that three years is enough to focus
on the permanent component of income.

Table F.I shows the result of the accounting decomposition for the top 100%, top 10%, and
top 2% (due to fact I only observe a sample of taxpayers, I cannot delve into smaller top
percentiles — the top 2% only represents 100 taxpayers). Note that, by definition, the growth
of top income share and the between term for the top 100% are equal to zero.

I find that the annual growth rate of top income shares during the time period for the top 2%
is 4.0%. This number can be decomposed as follows: a within term of 0.3%, a between term
of 4.2%, and a demography term of −0.5%. In other words, the between term plays an even
larger role compared to top wealth shares: the between term accounts for the whole increase in
top income inequality.

Figure F.1 plots the result of the decomposition over all percentiles. While the within term
and the demography term are relatively stable across the income distribution, the between term
gradually increases with top percentiles. As a result, the increase of the between term with
respect to percentiles lines up with the increase of the top income share, suggesting again that
the between term has been a key driver of the rise in top income shares during the time period.

To understand why the between term increases with top percentiles, Figure F.1a plots the con-
tributions of gt(qt)q2t /(pwPt) and νt(qt)

2 as a function of the top percentile. The standard devi-
ation of log income follows a U-shape, as in Guvenen et al. (2021). However, gt(qt)q2t /(pwPt)
increases almost monotonically with the top percentile, except at the very top. Overall, I find
that the model-implied between term increases monotonically with top percentiles.
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TABLE F.I

DECOMPOSING THE GROWTH OF TOP INCOME SHARES (1979-1990)a

(a) Summary

Growth of Top Percentile Wealth Share

Total Within Between Demography

Top 100% 0.0 −0.1 0.0 0.1
Top 10% 2.2 −0.0 2.3 −0.1
Top 2% 4.0 0.3 4.2 −0.5

(b) Within

Within

Total Average Income Growth in Top Percentile −Growth of U.S. Income per Capita

Top 100% −0.1 2.5 −2.6
Top 10% −0.0 2.6 −2.6
Top 2% 0.3 2.9 −2.6

(c) Between

Between

Total Inflow Outflow

Total nI
wI,1−q1

wP0,0
Total nO

q1−wO,1

wP0,0

Top 100% 0.0 0.0 0.0 — 0.0 0.0 —
Top 10% 2.3 1.2 7.3 16 1.2 7.4 16
Top 2% 4.2 2.5 9.2 26 1.8 8.8 21

(d) Demography

Demography

Total Birth Death Population Growth

Total nB
wB,1−q1

wP0,0
Total nD

q1−
wP0\D,1

wP0\D,0

wD,0

wP0,0
Total 1−nP0

q1−
wP0\D,1

wP0\D,0

wP0,0

wP0,0

Top 100% 0.1 3.8 5.1 75 −3.0 4.2 −72 −0.9 1.0 −91
Top 10% −0.1 1.1 3.5 32 −1.0 2.4 −38 −0.3 1.0 −35
Top 2% −0.5 0.9 3.0 33 −1.2 2.6 −37 −0.3 0.9 −30

a Table F.I reports the average of the annual growth rate for the top 100%, 10%, and 2% income shares, as well as the within, between,
and demography terms defined in the accounting framework (2). All terms in percentage. Data are from the IRS public use panel files.
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FIGURE F.1.—Decomposing the Growth of Top Income Shares (1979-1990)a

(a) Within, Between, and Demography Terms
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aFigure F.1a plots the average of the within, between, and demography terms as measured for each top percentile of the income distribution.
Figure F.1b plots the average estimates of gt(qt)q2t /(pwPt) and νt(qt)

2 for each top percentile of the income distribution. Data are from
the IRS public use panel files.
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