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Abstract

This paper examines the role of idiosyncratic volatility in driving the recent rise in top

wealth inequality. Because the composition of households in top percentiles changes over time,

the growth of top wealth shares is not simply equal to the average wealth growth of households in

top percentiles relative to the economy. It also depends on a displacement term, which is driven

by the entry and exit of households in top percentiles. I relate analytically the displacement term

to the dispersion of wealth shocks among top households. Using the Forbes 400 list, I document

that the displacement term accounts for more than half the rise in top wealth inequality in the

United States since 1983. I discuss the implications of this result for wealth mobility, as well as

for the relationship between inequality and technological innovation.
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1 Introduction

What drives the recent rise in top wealth shares? A common hypothesis is that this phenomenon

is driven by the rapid growth of top households relative to the overall economy, i.e. that “the rich

are getting richer” (Piketty (2014) or Hubmer et al. (2016)). This view implicitly assumes that

the composition of households in top percentiles remains constant over time. In reality, less than

10% of the households in the 1983 Forbes list of the 400 richest households in the United States

were still on the list in 2017. These large composition changes naturally drive a wedge between

the growth of top wealth shares and the wealth growth of households in the top percentiles. This

paper examines the importance of these composition effects for the dynamics of top wealth shares.

The paper is organized in three parts. First, I relate in continuous time the dynamics of top

wealth shares to the dynamics of individual wealth. The growth of the wealth share of a top

percentile is the sum of three terms. The first term (a “within” term) corresponds to the average

wealth growth of households in the top percentile relative to the rest of the economy. This is

the “rich getting richer” driver of wealth inequality. The second term (a “displacement” term)

corresponds to the wealth of households entering the top percentile minus the wealth of households

exiting the top. This can be seen as a “rich getting displaced” driver of wealth inequality. The

third term (a “demography” term), which I find to be empirically negligible, is driven by the death

of households in the top percentile as well as population growth.

Intuitively, the displacement term is driven by the dispersion of wealth shocks for households

at the top. To formalize this, I examine displacement when wealth follows a diffusion process (i.e.

normal shocks). When the wealth distribution has a Pareto tail, I show that the displacement term

equals 1/2(ζ− 1)ν2, where ν denotes the idiosyncratic volatility of wealth growth and ζ denotes the

power law exponent of the wealth distribution. The displacement term increases with the variance

of wealth shocks ν2 and decreases with wealth inequality (i.e. increases with ζ). The higher the level

of wealth inequality, the bigger the gap between wealthy households and the rest of the population,

and the less likely it is for households to enter and exit top percentiles.

The rapid rise of a few entrepreneurs at the top of the distribution indicates that non-normal

shocks may play an important role for displacement. I examine this hypothesis by studying the

dynamics of top wealth shares when wealth follows a diffusion process with jumps (i.e. non-

normal shocks). When the wealth distribution has a Pareto tail with power law exponent ζ, the

displacement term equals
∑+∞

2
1/j!(ζj−1 − 1)κj where κj denotes the j-th cumulant of wealth

growth. All higher-order cumulants, not just the variance of wealth growth, matter for the growth
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of top wealth shares. Negative skewness tends to decrease top wealth shares while positive kurtosis

tends to increase top wealth shares.

Second, I use this theoretical framework to document the role of displacement in the data. I

present an accounting framework that decomposes the growth of top wealth shares into a within

term, a displacement term, and a demography term, as suggested by the theory introduced above.

Applying this framework on the share of wealth owned by the 400 wealthiest in the U.S., I find

that the displacement term accounts for more than half the increase in top wealth inequality since

1983. More precisely, the 3.9% annual growth of top wealth inequality from 1983 to 2017 can be

decomposed as follows: the within term accounts for an annual growth of 1.9%, the displacement

term accounts for an annual growth of 2.3%, and the demography term is negligible. In other

words, a researcher who neglects compositional changes would overestimate by a factor of two the

average wealth growth of top households relative to the economy.

I use the theoretical model discussed above to shed light on the displacement term. With a

Pareto tail ζ ≈ 1.5 and an annual idiosyncratic volatility of wealth ν ≈ 27%, the diffusion model

predicts a displacement term around 1/2(ζ − 1)ν2 ≈ 2.0% per year, which is close to the actual

displacement term 2.3%. Higher-order cumulants do not matter much for displacement. Intuitively,

wealth inequality is so high that most of the entry in the top percentile is driven by households

already close to the top percentile, rather than entrepreneurs from the bottom of the distribution

with extremely high wealth realization. Moreover, most of displacement happens within industries

rather than between industries: the disruption of oil fortunes by tech entrepreneurs only accounts

for a small share of overall displacement.

I then use the model to estimate the role of displacement in the wealth share of the top 1%,

0.1%, and 0.01% over the 20th century, for which we lack panel data. I estimate the idiosyncratic

volatility ν of wealth at these top percentiles by interacting the share of wealth invested in equity

with the cross-sectional standard variance of firm-level returns. Overall, displacement follows an

inverted U-shape over the 20th century. It first peaked during the Great Depression, remained

low during the World Wars and the postwar economic boom, before peaking again during the

technological revolutions of the 1980s and 1990s.

Third, I examine the implications of this displacement term along two dimensions. I first

study the relation between wealth inequality and technological innovation. The existing literature

suggests that innovation has an ambiguous effect on top wealth shares. On the one hand, a rise

in technological innovation tends to reduce the market capitalization of incumbent firms, which

tends to decrease the average growth of households in top percentiles, and therefore to decrease
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top wealth shares (Gârleanu et al. (2012), Jones and Kim (2016)). On the other hand, a rise

in technological innovation increases the dispersion of wealth shocks among top, which tends to

increase displacement in top percentiles, and therefore to increase top wealth shares (Kogan et

al. (Forthcoming), Gârleanu and Panageas (2017)). Decomposing the growth of top wealth shares

allows me to separate these two opposite effects of innovation. Overall, I find that the second effect

dominates: technological innovation tends to increase top wealth shares. Far from being a symptom

of a stalling economy, the rise in wealth inequality in the 1980s and 1990s reflects the rapid pace

of innovation during that period.

Finally, I examine the importance of this decomposition for wealth mobility. While both the

within term and the displacement term increase inequality they have opposite effects on wealth

mobility. More precisely, a rise in the average wealth growth of top households decreases mobility,

whereas a rise in the dispersion of wealth shocks increases mobility. Using the decomposition

above, I estimate that the average time a household in the top 0.01% remains in the top percentile

decreased from 25 years in 1983 to 20 years now. The importance of displacement in the recent

rise in top wealth shares suggests that wealth mobility will remain high in the 21rst century, even

as wealth inequality continues to increase.

Related Literature. This paper is related to a recent empirical literature documenting the rise

in top wealth shares in the U.S. in the last thirty years (Kopczuk and Saez (2004), Piketty (2014),

Saez and Zucman (2016), Piketty and Zucman (2015) and Garbinti et al. (2017)). This literature

tends to interpret the rise in top wealth shares as a rise in the wealth growth of households in

top percentiles relative to the rest of the economy. In particular, Saez and Zucman (2016) define

a “synthetic saving rate” as the difference between the wealth growth of top wealth shares and

the average return of top households. My paper clarifies that this synthetic saving rate is actually

the sum of three conceptually different terms: a household saving rate, a “displacement” term due

to idiosyncratic wealth shocks, and a “demography” term due to the death of households in top

percentiles and population growth.

This work adds to a growing literature that studies the dynamics of inequality through the

lens of random growth models (Wold and Whittle (1957), Acemoglu and Robinson (2015), Jones

(2015)). Luttmer (2012), Gabaix et al. (2016) and Jones and Kim (2016) develop tools to study the

dynamics of wealth inequality over time. My contribution is to extend these tools to characterize

directly the dynamics of top shares.1 I also develop a new accounting framework that allows me

1To examine the impact of an increase of idiosyncratic volatility on top wealths shares, Gabaix et al. (2016) use

4



to map directly random growth models to the data. This new method reveals the importance of

the dispersion of wealth shocks in the recent rise in inequality. A recent macroeconomic literature

examines the drivers of top wealth inequality in general equilibrium models. For instance, Benhabib

et al. (2011) Benhabib et al. (2015b) examine the stationary wealth distribution in an economy with

idiosyncratic returns. More recently, Benhabib et al. (2015a) and Hubmer et al. (2016) calibrate

consumption/saving models to match the recent rise in top wealth shares. By disentangle non-

parametrically the within and the displacement term in the recent rise in top wealth shares, my

paper provides new moments that could be used to further discipline these models.

Recent empirical papers stress the importance of idiosyncratic wealth shocks at the very top.

Campbell (2016) proposes a decomposition of the change in the variance of log wealth into a

term due to differences in expected wealth growth and a term due to differences in unexpected

wealth shocks. Roussanov (2010) argues that rich households may be more likely to own assets

with idiosyncratic risk if they care about their ranks in the distribution. Bach et al. (2015) and

Fagereng et al. (2016) stress the dispersion of wealth growth across households, using administrative

data from Sweden and Norway. My contribution is to quantify theoretically and empirically the

role of the dispersion of wealth shocks in the dynamics of top wealth shares. Bach et al. (2017)

use the decomposition presented in this paper to decompose the dynamics of top wealth shares in

Sweden.

Finally, this paper contributes to a large literature on the importance of innovation for the

overall economy. I document a strong relationship between displacement and innovation, which

supports similar evidence in Aghion et al. (2015) and Kogan et al. (Forthcoming). Furthermore,

I document a decline in displacement in the last two decades. This ties my paper to a growing

literature documenting the secular decline in business dynamism (Decker et al. (2016a)), and in

particular in the number of young high-growth firms since 2000 (Decker et al. (2016b)).

Roadmap. The rest of my paper is organized as follows. In Section 2, I derive in continuous-time

the law of motion of top wealth shares to the law of motion of household wealth. In Section 3,

I present an accounting framework to decompose the growth of top wealth shares into a within

term, a displacement term, and a demography term using panel data. In Section 4, I apply this

framework to decompose the growth of Forbes 400. In Section 5, I examine the role of displacement

for the top 1%, 0.1%, and 0.01% over the 20th century. In Section 6, I discuss the implication of

Kolmogorov Forward to simulate the dynamics of wealth density, and then integrate the simulated path of the density

to obtain the dynamics top wealths shares. By contrast, this paper derives the dynamics of top wealth shares directly.
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my findings for technological innovation and wealth mobility.

2 Theory

In this section, I present the main theoretical contribution of this paper: I derive a formula relating

the growth of top wealth shares to the dynamics of individual wealth. Section 2.1 first presents

the result in the simple case where wealth follows a simple diffusion process. Section 2.2 extends

the result to more realistic wealth dynamics, that account for households heterogeneity and jumps.

Finally, Section 2.3 derives the dynamics of top wealth shares in presence of death and population

growth.

2.1 Displacement in the Baseline Model

Wealth Process. I first examine the dynamics of top wealth shares in a very simple framework.

I assume that wealth follows a geometric Brownian motion. More precisely, the wealth of household

i relative to the total wealth in the economy, wit, follows the diffusion process:

dwit
wit

= µtdt+ νtdBit (1)

where Bi = {Bit,Ft, t ≥ 0} is an idiosyncratic Brownian motion for household i, in a probability

space (Ω, P,F) equipped with a filtration F = {Ft, t ≥} with the usual conditions. The instanta-

neous drift µt and the instantaneous volatility νt of wealth are allowed to depend on time.

I focus on the dynamics of St, the share of wealth owned by households in a top percentile p.

Denote gt the density of relative wealth in the economy and qt the relative wealth of household at

the percentile threshold (formally, the 1− p quantile). The top wealth share St is simply given by

the total amount of relative wealth owned by households above the threshold qt:
2

St =

∫ +∞

qt

wgt(w)dw (2)

Proposition 1 (Dynamics of Top Wealth Share). When wealth follows the law of motion (1), the

top wealth share St follows the law of motion:

dSt
St

= µtdt︸︷︷︸
drwithin

+
gt(qt)q

2
t

2St
ν2
t dt︸ ︷︷ ︸

drdisplacement

(3)

2Here and for the rest of the paper, I assume that the top wealth share is finite, i.e., for a distribution with a

heavy tail, that its power law exponent is higher than one.
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The growth of the top wealth share St does not only depend on the average wealth growth of

households in top percentiles, µt. It also depends on a term due to the variance of wealth shocks,

ν2
t . For the rest of the paper, the first term is referred as the “within” term, and the second term

is referred as the “displacement” term.

Proposition 1 can be seen as an integrated version of the Kolmogorov Forward equation.3

Kolmogorov Forward equation relates the dynamics of the density of wealth to the dynamics of

individual wealth:

dgt(w) = −µtdt∂w(wgt(w)) +
ν2
t dt

2
∂ww(w2gt(w)) (4)

This equation similarly decomposes the change in the wealth density into a term due to the average

wealth growth and a term due to idiosyncratic volatility. Compared to Equation (3), this equation

cannot be easily brought to the data, since it requires to estimate the first and second derivatives

of the wealth density.

I now present a heuristic derivation for the expression of the displacement term. This derivation

follows the graphical explanation given in Figure 1. During a short period of time dt, the Brownian

motion can be approximated by a discrete process: with probability half, the wealth of a household

is multiplied by (1 + νt
√
dt), otherwise, it is multiplied by (1 − νt

√
dt). This dispersion of wealth

shocks generates entry and exit in the top percentile. First, households with a wealth between

qt/(1 + νt
√
dt) and qt with a positive shock enter the top percentile. Because population size in

the top percentile is held constant, each entering household displaces a household at the lower

percentile threshold, with wealth qt. The total increase of St due to these entries is therefore qt:∫ qt
qt

1+νt
√
dt

((1+νt
√
dt)w−qt)
St

gt(w)
2 dw. Using the midpoint method, it can be written the product of the

mass of households that enter the top percentile during the time period dt, 1/2qtν
√
dtgt(qt), and the

average increase of top wealth share per entry, qtνt
√
dt/(2St). Second, households with a wealth

between qt and qt/(1−νt
√
dt) with a negative shock exit the top percentile. Each exiting household

is replaced by a household at the lower percentile threshold, with wealth qt. The total increase of

St due to these exits is therefore
∫ qt

qt
1+νt

√
dt

((1+νt
√
dt)w−qt)
St

gt(w)
2 dw. Using the midpoint method, it

can be written the product of the mass of households that exit the top percentile during the time

period dt, 1/2qtν
√
dtgt(qt), and the average increase of top wealth share per exit, qtνt

√
dt/(2St).

Summing the term due to entry and the term due to exit, we obtain Proposition 1.

3It is actually derived by integrating the Kolmogorov Forward equation, see the proof of Proposition 1 in Ap-

pendix A.
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Heavy Tail. One of the most ubiquitous regularities in economics and finance is that many

distributions are well approximated by a power law. In this case, we can simplify Proposition 1.

Definition 1. A distribution is Pareto if the CDF is a power law of wealth, i.e.:

P(wit ≥ w) = Cw−ζ (5)

ζ is called the power law exponent of the distribution.

Proposition 2 (Dynamics of Top Wealth Share with Pareto Distribution). Suppose that the wealth

distribution at time t is Pareto with power law exponent ζ, and that the instantaneous law of motion

of relative wealth wit is given by (1). Then, the top wealth share St follows the law of motion:

dSt
St

= µtdt︸︷︷︸
drwithin

+
ζ − 1

2
ν2
t dt︸ ︷︷ ︸

drdisplacement

(6)

Proposition 2 gives a strikingly simple formula for the displacement term. It depends on only two

parameters: ζ, the power law exponent of the wealth distribution, and ν, the geometric volatility

of wealth shocks. For a distribution with a power law exponent ζ ≈ 1.5 and idiosyncratic variance

equals to ν ≈ 27%, we can expect the displacement term to average 2.0% per year, which is large.

The displacement term does not depend on the top percentile p. The role of idiosyncratic

volatility for the dynamics of the wealth share is quantitatively the same everywhere in the distri-

bution. Of course, this result relies on the strong assumption that the wealth distribution is Pareto

everywhere. Proposition 2 can be adapted to the more general case in which the wealth distribution

only has a heavy tail, i.e. P(wit ≥ w) = L(w)w−ζ where L(w) is a slowly varying function.4 In this

case, Proposition 2 holds true in the limit, i.e.:

dSt
St
∼ µtdt+

ζ − 1

2
ν2
t dt as p→ 0 (8)

The displacement term decreases in the power law exponent of the wealth distribution ζ. Intuitively,

as the distribution becomes more unequal (ζ decreases), displacement decreases for two reasons.

First, there are fewer households near the lower percentile threshold, i.e. the mass of households

that enter or exit the top percentile relative to the mass of households in the top percentile ζν
√
dt

4 A slowly varying function L is defined as

lim
w→+∞

L(tw)

L(w)
→ 1 (7)
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decreases5. Second, the ratio of wealth at the lower percentile threshold to the average wealth above

the percentile decreases, i.e. the average growth of top wealth share per entry or exit (1− 1
ζ )ν
√
dt

decreases. In the limit where ζ converges to one (Zipf’s law), the displacement term converges to

zero: idiosyncratic shocks have no impact on the growth of the top wealth share St.

While Proposition 2 assumes that the wealth distribution has a Pareto tail at time t, whether the

wealth distribution continues to have a Pareto tail going forward depends on the exact specification

of the model.6 In a wide class of models, however, Gabaix et al. (2016) show that the right tail of

the distribution moves very slowly.7 Empirically, we will see that Equation (6) continues to be a

good approximation of the displacement term along the transition path of the wealth distribution.

Long Run. When µt and νt are constant over time, the wealth distribution converges to a

stationary wealth distribution that is Pareto.8 In this case, Proposition 1 can be used to characterize

the power law exponent of the stationary wealth distribution ζ: it is the index such that the

(positive) displacement term exactly compensates the (negative) within term:

0 = µdt+
ζ − 1

2
ν2dt (9)

that is, ζ = 1 − 2µ/ν2. While this well-known formula for the power law exponent ζ is usually

derived from the law of motion of the wealth density (Kolmogorov-Forward equation)9, deriving it

from the law of motion of top wealth shares makes it clear that it represents a balance equation for

top wealth shares.

2.2 Displacement in Extended Models

Proposition 1 was derived under the simplifying assumption that wealth followed the same simple

diffusion process for all households in the economy. I now focus on four deviations from this model

that correspond to more realistic wealth dynamics: scale dependence, household heterogeneity, and

jumps. I derive analytical expressions for the displacement term in all these cases

5See the heuristic derivation of Proposition 1 discussed above.
6In particular, whether there is a reflecting barrier at a certain level of wealth.
7In the particular setup of Proposition 2, one can show the instantaneous change in gt(qt)q

2
t /St for a top percentile

is zero. To prove it, combine the law of motion for the top wealth share given in Proposition 1, the law of motion for

the quantile given in Proposition 7, and the law of motion for the wealth density from Kolmogorov-Forward Equation.
8One needs to impose that µ ≤ 0 and that there is a reflecting barrier at some low level of wealth, see Gabaix

(1999).
9See for instance Gabaix (2009).
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Scale Dependence. Proposition 1 assumed the law of motion of households wealth was linear

in wealth. While this is a natural assumption, we may expect saving and investment decisions to

be heterogeneous across the wealth distribution. This may be due to non homothetic preferences

(Roussanov (2010), Wachter and Yogo (2010)), credit constraints (Wang et al. (2016)), stochas-

tic labor income (see Carroll and Kimball (1996)), or heterogeneous investment opportunities at

different levels of wealth.

Formally, I assume that the drift and volatility of wealth depend on the wealth level w, that is

dwit
wit

= µt(wit)dt+ νt(wit)dBit (10)

where µ and ν are differentiable functions of wealth wit. In this case, I show in the appendix that

the top wealth share St follows the law of motion:10

dSt
St

= Egw[µt(w)|w ≥ qt]dt︸ ︷︷ ︸
drwithin

+
gt(qt)q

2
t

2St
νt(qt)

2dt︸ ︷︷ ︸
drdisplacement

(11)

where Egw denotes the wealth-weighted cross-sectional average along the wealth distribution.

The within term is the wealth-weighted average of the drift in the top percentile. It simply

corresponds to the instantaneous growth of total wealth of individuals in the top percentile.

Remarkably, the displacement term depends exclusively on the idiosyncratic variance of house-

holds at the lower percentile threshold, νt(qt)
2. This is because, as seen in the heuristic derivation

of Proposition 1, only households near the lower percentile threshold enter or exit the top percentile

during a short period of time dt. The key assumption is that wealth is a continuous process (i.e.

no jumps), which will be relaxed below.

This equation reveals that the law of motion of St does not depend on the dynamics of wealth

of households below the top percentile. Therefore, Proposition 1 still holds true when wealth is a

geometric Brownian motion only above the lower threshold qt.

Heterogeneity. Proposition 1 was derived under the assumption that all households have the

same process for relative wealth. In reality, different households may have different average wealth

growth, different exposure to aggregate risks, or different idiosyncratic volatility.

To model this heterogeneity in a parsimonious way, I assume that households can belong to one

of 1 ≤ n ≤ N groups, and that the relative wealth of households in group n evolves according to

10See Proposition 8 in Appendix A.
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the law of motion:

dwnt
wnt

= µntdt+ σntdZt + νntdBit (12)

where Zt = {Zit ∈ Rd,Ft, t ≥ 0} is a d−dimensional aggregate Brownian motion. Each group n

has a different exposure to aggregate risk given by σnt. Because the aggregate Brownian motion

is multidimensional, this setup includes the situation in which households are differently exposed

to the same aggregate risk, or in which households are exposed different aggregate risks (such as

different industries).

In this case, I show in the appendix that the top wealth share St follows the law of motion:11

dSt
St

= Egw[µnt|wit ≥ qt]dt+ Egw[σnt|wit ≥ qt]dZt︸ ︷︷ ︸
drwithin

+
gt(qt)q

2
t

2St

(
Egw[ν2

nt|wit = qt] + Vargw[σnt|wit = qt]
)
dt︸ ︷︷ ︸

drdisplacement

(13)

where Egw (resp. Vargw) denotes the wealth-weighted cross-sectional average (resp. variance) along

the wealth distribution.

The within term can still be interpreted as the total wealth growth of households in the top

percentile. It is the sum of a drift term and a stochastic term, where the stochastic term is driven

by the wealth-weighted average exposure to aggregate risk of households in the top.

The displacement term now depends on the average of idiosyncratic variance at the threshold

Egw[ν2
nt|wit = qt], but also on the cross-sectional variance in exposure for households at the lower

percentile threshold Vargw[σnt|wit = qt]. Heterogeneous exposures to aggregate risks — not just id-

iosyncratic risk — may drive the displacement term. The displacement term can still be interpreted

as the cross-sectional variance of the wealth growth of individuals around the wealth threshold qt.

For short time periods, fluctuations in the top wealth share St are driven by fluctuations in the

wealth growth of households in the top, rather than fluctuations in displacement. This is because

the within term is exposed to aggregate risk dZt, while the displacement term is not. Over the

long-run, however, these aggregate shocks average out, and the effect of displacement becomes more

apparent.

Jumps. The preceding analysis assumed that household wealth followed a diffusion process. This

implied that the wealth process of households at the top was continuous. In reality, we observe that

11See Proposition 10 in Appendix A.
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some entrepreneurs appear to reach top percentiles almost instantaneously. These large jumps in

wealth may come from jumps in asset valuations, as in Aı̈t-Sahalia et al. (2009).

I derive the dynamics of the top wealth share St when wealth follows a jump-diffusion process.

I focus here on the case in which the wealth distribution has a Pareto tail with power law exponent

ζ at time t. Under certain conditions, I show in the appendix that the growth of the top wealth

share St is given by:12,13

dSt
St

=
1

ζ
Et

[
dwζit

wζit

]
(14)

Adding and subtracting the instantaneous growth of wealth gives the growth of the top wealth

share St as the sum of a within term and a displacement term:

dSt
St

= Et

[
dwit
wit

]
︸ ︷︷ ︸
drwithin

+
1

ζ
Et

[
dwζit

wζit

]
− Et

[
dwit
wit

]
︸ ︷︷ ︸

drdisplacement

(15)

The displacement term is positive and increases in ζ, as in the baseline model.14 By expanding

Et[dw
ζ
it/w

ζ
it] as a power series in ζ, the displacement term can be re-written as the sum of the

cumulants of wealth growth:15

drdisplacement =
+∞∑
j=2

ζj−1 − 1

j!
κjtdt

=
ζ − 1

2
ν2
t dt+

ζ2 − 1

6
ν3
t · skewness · dt+

ζ3 − 1

24
ν4
t · excess kurtosis · dt+ . . . (16)

This formula generalizes the displacement term for the case of jumps. The displacement term

depends on the variance, but also on all higher-order cumulants of wealth growth. A negative

skewness tends to decrease the displacement term while a positive kurtosis tends to increase the

displacement term.

As the power law exponent of the wealth distribution ζ increases, the importance of higher-order

cumulants increases relative to the variance component. To take a simple example, going from a

12See Proposition 11 in Appendix A.
13This expression characterizes the power law exponent ζ of the eventual stationary distribution, giving a

continuous-time version of Champernowne (1953).
14See Proposition 12 in Appendix A.
15Formally, I define κjt as the j-th coefficient in the Taylor expansion of ζ → Et

[
dwζit/w

ζ
it

]
, i.e.

Et

[
dwζit
wζit

]
=

+∞∑
j=1

ζj

j!
κjtdt
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distribution with ζ = 1.5 (the power law exponent of the wealth distribution) to a distribution with

ζ = 2.5 (the power law exponent of the distribution of labor income), the term due to the variance

of wealth shocks is multiplied by 3, while the term due to kurtosis is multiplied by 6. Intuitively,

the lower the level of wealth inequality, the more entry and exit there is from households far from

the percentile threshold (i.e. due to higher-order cumulants) rather than households close to the

percentile threshold (i.e. due to the variance of wealth growth).

2.3 Demography Term

Demographic Forces. For simplicity, the preceding analysis assumed away any change in top

wealth shares due to demography. In reality, households at the top may die, which changes the

composition of households at the top. Due to population growth, the total number of households in

a given percentile also increases over time. I now augment the framework of Section 2.1 to account

for these two demographic forces.

I model death by assuming that households in the top percentile p die with a hazard rate δ.

The hazard rate δ can vary over time, though I omit the time subscript for notational simplicity.

I model inheritance as follows. When a household in the top percentile dies, it is replaced by their

offspring, who is born with a fraction χ ∈ [0, 1] of their initial wealth. Other newborns are born

below the top percentile.

The parameter χ controls the extent to which top fortunes are able to maintain themselves.

When χ = 100% (i.e. “perfect inheritance”), households that die are directly replaced by their

offspring: death has no impact on top wealth shares. At the other end of the spectrum, when

χ = 0% (i.e. “no inheritance”) there is no transmission of wealth across generations. Economically,

the fraction of wealth that cannot be passed to offspring, 1− χ, can be interpreted as the average

estate tax.

Finally, I assume that population grows with rate η. Like the death rate δ, the population

growth rate η can vary over time, though I omit the time subscript for notational simplicity.

Proposition 3 (Dynamics of Top Wealth Share with Demographic Forces). When wealth follows

the law of motion (1), with death rate δ, inheritance parameter χ, and population growth η, the top

wealth share St follows the law of motion:

dSt
St

= drwithin + drdisplacement + drdemography (17)

where the within term drwithin and the displacement term drdisplacement are defined in Proposition 1,

13



and where the demography term drdemography is given by:

drdemography ≡
(
χSt(πtp) + (1− πt)qtp

St
− 1

)
δdt︸ ︷︷ ︸

drdeath

+
qtp

St
ηdt︸ ︷︷ ︸

drpop. growth

(18)

where πt ≡ P (χw ≥ qt|w ≥ qt) is the proportion of households that die with a wealth high enough

that their offspring enters the top percentile.

Due to death and population growth, a new “demography” term appears in the growth of top

wealth share St, which is the sum of a term due to death and a term due to population growth.

The term due to death is always negative. It increases with the degree of inheritance χ. When

χ = 100% (i.e. perfect inheritance), πt = 1 and therefore the term equals 0. In this case, death does

not decrease the growth of top wealth share St. By contrast, the term due to population growth is

always positive.16 As population grows, the top percentile p includes more and more households,

which increases the top wealth share St. Overall, the demography term has an ambiguous sign.

I now present an heuristic derivation for the term due to demographic forces. Start with the

term due to death. Between t and dt, a mass δpdt of households in the top die, which decreases

total wealth in the top percentile by Stδdt. A proportion πt of these households has a wealth high

enough that their newborn offspring enters the top percentile. Since the average wealth of these

offsprings is χSt(πtp)/(pπt), this increases total wealth in the top percentile by χSt(πtp). The

other households are simply replaced by households that enter at the lower percentile threshold,

with wealth qt. The total increase of St due to death is (χSt(πtp) + (1−πt)qtp−St)δdt. I now turn

to the term due to population growth. Between t and dt, a new mass ηpdt of households enters the

top percentile. Since the wealth of these households equals to qt, this increases total wealth in the

top percentile by ηpqtdt. The total increase of St due to population growth is ηpqtdt.

Heavy Tail. Similarly to the preceding analysis in Section 2.1, the demography term dramatically

simplifies when the wealth distribution is Pareto.

Proposition 4 (Dynamics of Top Wealth Share with Demographic Forces and Pareto Distribution).

Suppose that the wealth distribution at time t is Pareto with power law exponent ζ, and that the

16 Alternatively, one could define the within term as the wealth growth of households in the top percentile relative

to the wealth growth of existing households, rather than the wealth growth of the economy. In this case, denoting θ

the ratio between the wealth of a newborn household relative to the average wealth a household in the economy, the

within term would equal µdt + θηdt while the population growth term would equal
(
qtp
St
− θ
)
ηdt. In any case, the

displacement term remains unchanged.
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instantaneous law of motion of relative wealth wit is given by (1), with death rate δ, inheritance

parameter χ, and population growth η. Then the top wealth share St follows the law of motion:

dSt
St

= drwithin + drdisplacement + drdemography (19)

where the within term drwithin and the displacement term drdisplacement are given in Proposition 2,

while the demography term drdemography is given by:

drdemography ≡
χζ − 1

ζ
δdt︸ ︷︷ ︸

drdeath

+

(
1− 1

ζ

)
ηdt︸ ︷︷ ︸

drpop. growth

(20)

The term due to demography is greatly simplified when the wealth distribution has a Pareto

tail. The term due to death now depends on only three parameters: ζ, the power law exponent of

the wealth distribution, δ, the death rate of top households, and χ, the fraction of wealth that can

be passed to offspring. The term due to population growth depends on only two parameters: ζ,

the power law exponent of the wealth distribution, and η, the population growth rate.

Like the displacement term, the demography term increases in ζ. As ζ decreases (i.e. as wealth

inequality decreases), the ratio between the wealth of households at the lower percentile threshold

and the average wealth of households in the top percentile decreases. Therefore both the death

term and the population growth term decrease.

Quantitatively, we can expect the demography term to be small. To take realistic parameters,

for a distribution with a power law exponent ζ ≈ 1.5, a death rate δ ≈ 1.5%, a fraction of wealth

passed to offspring χ ≈ 60%,17 and a population growth rate η ≈ 1%, we obtain the demography

increases the growth rate of top wealth shares by drdemography ≈ −0.2% per year, which is small.

3 Accounting Framework

A natural question to ask is whether the law of motion of top wealth shares presented in the

previous section can be mapped to the data. In this section, I present an accounting framework

that does exactly this. I show how to decompose empirically the growth of top wealth share into a

within term, a displacement term, and a demography term using panel data.

Case without Demographic Forces. I first present the accounting decomposition in the case

without demographic forces, i.e. without death or population growth. This makes it easier to

17This corresponds to an average estate tax of 40%.
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understand the intuition behind the decomposition. Assume that the econometrician observes a

representative sample of households in the economy at time t and at time t+ τ . The growth of the

top wealth share St of a given top percentile p between t and t+ τ is given by:

St+τ − St
St

=

∑
i∈T ′ wit+τ∑
i∈T wit

− 1

where T denotes the set of households in the top percentile at time t and T ′ the set of households

in the top percentile at time t + τ . Denoting X the set of households that exit the top percentile

between t and t+ τ , and E the set of households that enter the top percentile between t and t+ τ ,

we can write T ′ = (T ∪ E) \ X . The growth of the top wealth share St between t and t + τ can

be decomposed into a term due to the average wealth growth of households at the top, and a term

due to entry and exit:

St+τ − St
St

=

∑
i∈T wit+τ∑
i∈T wit

− 1︸ ︷︷ ︸
Rwithin

+

∑
i∈E wit+τ −

∑
i∈X wit+τ∑

i∈T wit︸ ︷︷ ︸
Rdisplacement

(21)

The within term Rwithin is the wealth change for households in the top percentile at time t, whether

or not these they drop out of the top between t and t + τ . The displacement term Rdisplacement is

the difference between the wealth of households that enter the top percentile between t and t + τ

and the wealth of households that exit the top percentile between t and t+ τ .

To separate the role of entry and exit in the growth of the top wealth share St, it is useful to

rewrite the displacement term as the sum of a term due to entry and a term due to exit:

Rdisplacement ≡
∑

i∈E(wit+τ − qt+τ )∑
i∈T wit

+

∑
i∈X (qt+τ − wit+τ )∑

i∈T wit
(22)

where qt+τ is the wealth of the last household in the top at time t + τ . Intuitively, when Mark

Zuckerberg entered the Forbes 400 list in 2008, he displaced the last household in Forbes 400, that

became the 401th wealthiest household. The net increase of Forbes 400 wealth share due to this

entry is the difference between his wealth and the wealth of this last household. Conversely, when,

say, Elizabeth Holmes dropped out of the Forbes 400 list in 2016, this caused the 401th wealthiest

household to enter Forbes 400 list. The net increase in Forbes 400’s wealth share due to this exit,

relative to the within term, is the difference between the wealth of this last household and her new

wealth.

Case with Demographic Forces. I now extend this decomposition to account for demographic

forces, i.e. death and population growth, which also generate entry and exit in the top percentile.
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Denoting XD the set of households in the top percentile that die between t and t+ τ , and ED the

set of their offsprings that enter the top percentile after inheriting, we can write T ′ = (T ∪ E ∪

ED) \ (X ∪ XD).18

Proposition 5 (Accounting Decomposition). The growth of the top wealth share St between t and

t+ τ can be decomposed as follows:

St+τ − St
St

= Rwithin +Rdisplacement +Rdemography (23)

where the within term Rwithin is defined as

Rwithin ≡
∑

i∈T \XD wit+τ∑
i∈T \XD wit

− 1 (24)

the displacement term Rdisplacement is defined as

Rdisplacement ≡
∑

i∈E(wit+τ − qt+τ )∑
i∈T wit

+

∑
i∈X (qt+τ − wit+τ )∑

i∈T wit
(25)

and the demography term Rdemography is defined as19

Rdemography ≡
∑

i∈ED wit+τ + (|XD| − |ED|) qt+τ −
∑

i∈XD(1 +Rwithin)wit∑
i∈T wit︸ ︷︷ ︸
Rdeath

+
(|T ′| − |T |)qt+τ∑

i∈T wit︸ ︷︷ ︸
Rpop. growth

(26)

The new demography term Rdemography is the sum of a term due to death Rdeath and a term due

to population growth Rpop. growth. The term due to death is the difference between the wealth of

the households that replace deceased households in the top percentile (the wealth of their offspring,

or, in absence of offspring, the wealth of the last household in the top percentile) and the wealth of

deceased households.20 The term due to population growth is the wealth of the last household in

the top percentile times the number of households that enter the top percentile due to population

growth.

As shown in Appendix B,21 when the wealth of households in the top percentile follows the law of

motion (1), the decomposition converges to the theoretical decomposition presented in Proposition 3

as the time period τ tends to zero. Therefore, this accounting framework can be used to disentangle

the different drivers of top wealth shares.

18Here, X denotes the set of households that exit the top percentile for reasons other than death, and E denotes

the set of households that enter the top percentile for reasons other than inheritance.
19|.| denotes the number of elements in the set .
20The offspring can refer to one or multiple children.
21See the proof of Proposition 5.
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4 Empirical Analysis

In this section, I apply the accounting framework presented in the previous section to decompose

the growth of the wealth share of Forbes 400. I present the Forbes 400 data in Section 4.1. I discuss

the results of the decomposition in Section 4.2. Finally, in Section 4.3, I examine the robustness of

the decomposition with respect to measurement error.

4.1 Data

I focus on the list of the wealthiest 400 Americans constructed by Forbes Magazine every year since

1983. The list is created by a dedicated staff of the magazine, based on a mix of public and private

information.22 Because Forbes nominatively identifies the 400 wealthiest individuals in the U.S, one

can track the wealth of the same individuals over time,23 which is key to measure displacement. By

contrast, other data sources used to track the level of wealth inequality in the U.S. rely on repeated

cross-sections.24 Using data from Forbes and Execucomp, I also match individual to the firms they

own. Firm-level stock returns are obtained through CRSP.

I focus on the wealth share owned by a percentile that includes the richest 400 U.S. households

in 2017.25 To obtain the wealth share of this percentile by dividing the total wealth of households

as reported by Forbes 400 by the aggregate wealth of U.S. households from the Financial Accounts

(Flow of Funds). While this top percentile accounts for a small percentage of the total U.S.

population, it accounts for a substantial share of total U.S. wealth (almost 3% in 2017).

Figure 2 plots the cumulative growth of the share of wealth owned by this top percentile since

1983, as well as the cumulative growth of the wealth share of the top 0.01%, 0.01%, 1%, and 10%

from Saez and Zucman (2016). Most of the increase of top wealth inequality during the period is

concentrated in the top 0.01%. Moreover, the rise in Forbes 400 wealth share tracks very well the

22Forbes Magazine reports: “We pored over hundreds of Securities Exchange Commission documents, court records,

probate records, federal financial disclosures and Web and print stories. We took into account all assets: stakes in

public and private companies, real estate, art, yachts, planes, ranches, vineyards, jewelry, car collections and more.

We also factored in debt. Of course, we don’t pretend to know what is listed on each billionaire’s private balance

sheet, although some candidates do provide paperwork to that effect.”
23I extend the construction from Capehart (2014) for the last five years. In Appendix C.1, I describe how I obtain

the wealth of individuals that exit the top percentile.
24The three main datasets on the wealth distribution in the U.S. are the Survey of Consumer Finances, Estate Tax

Returns (see Kopczuk and Saez (2004)) and Income Tax Returns (see Saez and Zucman (2016)), which all correspond

to repeated cross-sections.
25It corresponds to approximatively 0.0003% of U.S. population. Due to population growth, it includes 264 house-

holds in 1983. Data on household population is from the U.S. Census Bureau.
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rise in the wealth share of the top 0.01%. This suggests that understanding the wealth growth of

Forbes 400 can shed light on the overall rise in top wealth inequality during the period.

4.2 Results

Description. Table 1 reports the result of the accounting decomposition. The first line reports

each term geometrically averaged over the entire time period. I find that the displacement term is

responsible for half of the increase of the top wealth share. More precisely, the 3.9% yearly growth

of the top wealth share can be decomposed into a within term equal to 1.9%, a displacement term

equal to 2.3%, and a demography term equal to -0.3%.

To examine low-frequency changes in the decomposition since 1983, Table 1 reports the terms

averaged across three time periods of equal duration since 1983. Each time period covers an entire

business cycle. The first period covers 1983-1993, which includes the 1990-1991 recession. The

second period covers 1994-2004, which includes the 2001 recession. The third period covers 2005-

2016, which includes the 2007-2009 recession. I find that the displacement term has substantially

decreased over time: it goes from 3.0% in the first part of the sample (1983-1993), to 2.5% in

the second part of the sample (1994-2004), and finally to 1.4% in the third part of the sample

(2005-2016). Table A1 in the appendix formally regresses the terms obtained in the accounting

decomposition on year trends, showing that the decrease of the displacement term over time is

statistically significant.

Figure 3 plots the cumulative sum of the terms since 1983. Business-cycle fluctuations in top

shares are driven by fluctuations in the within term, rather than fluctuations in the displacement

or the demography term. This is not surprising: as seen in the theoretical section above, when

top households are particularly exposed to aggregate risks, the instantaneous variance of the top

wealth share is entirely driven by the within term.26

Displacement Through the Lens of the Model. I examine the displacement term through

the lens of the theoretical framework laid out in Section 2.27 When wealth follows a diffusion

process (i.e. normal shocks), Section 2 predicts that the displacement term equals 1/2(ζ − 1)ν2

where ζ is the power law exponent of the wealth distribution and ν2 is the idiosyncratic variance

of wealth growth. To compare the prediction of this model with the actual displacement term, I

estimate the power-law exponent of the wealth distribution ζ as well as the standard deviation of

26See Equation (13).
27The dynamics of the within term and the demography term are relegated in Appendix C.
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wealth growth ν in Table 2. I obtain a model-predicted displacement term equal to 2.0%, which

comes from an average ζ equal to 1.5 and an average ν equal to 27%. This very close to the actual

displacement term, which averages 2.3%.

What is the role of higher-order cumulants for displacement? When wealth follows a jump-

diffusion process (i.e. non-normal shocks), Section 2 shows that the displacement term equals∑+∞
2

ζj−1−1
j! κjt where κjt denotes the j−th cumulant of wealth growth.28 To examine whether

the wealth growth of top households displays non-normality, I estimate the skewness and kurtosis

of wealth growth in Table 2. The average skewness is negative around -0.3 (i.e. more downward

realizations compared to the log-normal distribution), while the average excess kurtosis is positive

around 5 (i.e. more extreme realizations compared to the log-normal distribution). Combined with

a power law exponent around ζ ≈ 1.5, this implies that skewness decreases the displacement term

by 0.2%, while kurtosis increases the displacement term by 0.3% annually (see Table 3). In other

words, the effect of higher-order cumulants on the displacement term is small. Intuitively, wealth

inequality is so high that entry in the top percentile is mostly driven by households already close

to the percentile threshold, rather than entrepreneurs from the bottom of the distribution with

extremely high wealth realization (similarly, exit is mostly driven by households already close to

the percentile threshold rather than households from the top of the distribution).

To examine the effect of higher-order cumulants at yearly frequency, Figure 4 plots the actual

displacement term, the displacement term predicted by the diffusion model, as well as the term

predicted using by the jump-diffusion model. While the term predicted by the diffusion model tracks

the actual displacement term very well, it misses the rise of the displacement term in 1986 and 1998,

as well as the decline of the displacement term during the burst of the tech bubble. Accounting for

the skewness and kurtosis of wealth shocks is important to match these fluctuations.

What Drives Idiosyncratic Volatility? I now examine the role of firm-level returns in driving

the dispersion of wealth shocks for households in the top percentile. To test this hypothesis, I

regress the variance of household-level wealth growth on the equal weighted variance of firm-level

returns in column (1) of Table 5. If households split their wealth in n uncorrelated firms, the

idiosyncratic volatility of their wealth equals νstocks/
√
n, where νstocks denotes the idiosyncratic

volatility of firm-level returns. The estimate for the slope is 0.18, which can be interpreted as an

average number of distinct firms owned by top households n = 5. The estimate for the intercept

28While it allows for jumps, the model with jumps assumes that the distribution of wealth is exactly Pareto and

that the law of motion of wealth is the same at any level of wealth.
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is close to zero, which means that the number n, identified purely from time-series variation, also

accounts for the level of the idiosyncratic volatility of wealth. This suggests that the idiosyncratic

volatility of wealth growth is almost entirely driven by the idiosyncratic volatility of firm-level

returns.

Explaining the Decline in Displacement. What explains the decline of the displacement term

over time? To answer this question, I use the displacement term predicted by the diffusion model

1/2(ζ − 1)ν2 to decompose the decline of the displacement term into a decline in the idiosyncratic

volatility of wealth shocks ν and a decline in the shape of the wealth distribution ζ in Figure 4. Half

of the decrease of the displacement term is due to the decrease of the dispersion of wealth shocks

from ν1980s ≈ 28% to ν2010s ≈ 23%, which follows a similar decline in the cross-sectional variance

of firm-level returns. The slow-down of the displacement term in the last two decades is therefore

related to the general decline in the pace of business dynamism. As documented by Decker et al.

(2016a), much of the decline occurs within industry, firm-size and firm-age categories.

The remaining half is due to the decrease of the power law exponent from ζ1980s ≈ 1.8 to

ζ2010s ≈ 1.4. Intuitively, following the rapid rise in idiosyncratic volatility at the end of the 20th

century, wealth inequality increased so much that households with high wealth shocks now have a

harder time entering the top.29

Within and Between Industries. How important is the rise and fall of certain industries (i.e.

software v.s. oil) for the dynamics of top wealth shares? To answer this question, I use the displace-

ment term predicted by the diffusion model 1/2(ζ−1)ν2 to decompose the displacement term into a

displacement within industries and a displacement between industries. This decomposition uses the

fact that the cross-sectional variance of wealth shocks can always be decomposed into the average

variance within industry and the variance of average wealth growth between industries.30 Table 4

reports that the displacement term within industries averages to 1.6% whereas the displacement

term between industries averages to 0.4%. In other words, displacement within industries is much

more important than displacement term between industries.31 Figure 6 plots the two terms over

29Formally, the power law exponent of the stationary wealth distribution decreases with the idiosyncratic volatility

of wealth, as shown in Equation (9). Appendix D explores the dynamics of the power law exponent after changes in

idiosyncratic volatility.
30This decomposition mirrors the theoretical decomposition in Equation (13).
31This finding is consistent with Campbell et al. (2001), who find that the variance of firm-level returns within

industries is much higher than the variance across industry portfolio returns.
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time: the only time when the displacement between industries is quantitatively important is the

height of the dot-com bubble.32

4.3 Robustness

The wealth of individuals at the top is inevitably measured with errors. I conclude this section by

assessing the effect of measurement error on the displacement term, as measured in the accounting

decomposition Proposition 5.

The first concern is that Forbes may systematically underestimate or overestimate the wealth

of top 400 households. Along these lines, Atkinson (2008) argues the magazine may give inflated

values of the wealth of top households, because debts are harder to track than assets. Empirically,

Raub et al. (2010) document that the wealth of deceased households reported for on estate tax

returns is approximately half of the wealth estimated by Forbes. However, this measurement error

in level does not impact the growth of top wealth shares.

A related concern is that Forbes measures the wealth of top households with noise. If the

measurement error is completely persistent, as noted in Luttmer (2002), this leads Forbes to over-

estimate the level of top wealth shares, without affecting the growth of top wealth shares, nor the

accounting decomposition. If, however, the measurement error is non completely persistent, it may

generate artificial entry and exit in the top percentile. While this does not change the growth of top

wealth shares, this leads the econometrician to underestimate the within term and to overestimate

the displacement term.

I deal with this potential bias in three ways. First, Forbes usually report the reasons households

drop off the list. Less than 5% of these exits are due to the fact that the previously reported

wealth was inflated.33 I simply remove these households from the sample. Second, I estimate the

importance of transitory measurement errors in the remaining sample. Table 6 reports that the

autocorrelation of wealth growth at the individual level is close to zero, which suggests that there

is little mean-reversion in wealth growth. Formally, I show in Appendix C.2 that the relative bias

in the displacement term is well approximated by −2ρ, where ρ is the AR(1) coefficient of wealth

growth. With an estimated ρ ≈ 0.01, this suggests that transitory measurement error accounts

for only 4 basis points in the displacement term. Third, if measurement error was important, we

32In Appendix C.3, I use a similar method to decompose the displacement term into the variance within families

and the variance between families. The variance within families is negligible compared to the variance between

families.
33This includes in particular Donald Trump.
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would expect the regression of the variance of household wealth growth on the variance of firm-

level returns to have a large positive intercept. As shown in Table 5, the intercept is fairly small,

suggesting that measurement error does not play a significant role in driving the dispersion of

wealth growth.

A final concern is that Forbes 400 coverage may become more and more precise over time, and

therefore, that the magazine gradually discovers rich households that were not reported earlier

(Piketty (2017)). This would lead the econometrician to overestimate the displacement term as

well as the growth of top wealth shares. If this were an important driver of top wealth shares, the

observed displacement term would be higher than the term predicted by the dispersion of wealth

among existing households. This is not the case, as seen in Table 3.

5 Displacement Along the Wealth Distribution

Measuring the displacement term as the wealth of households entering the top minus the wealth

of households exiting the top requires panel data. However, most of the data on wealth inequality

beyond Forbes 400 is based on repeated cross-sections.34 In this case, however, the empirical

results of the previous section suggests that the displacement term can be approximated by the

term predicted by the diffusion model 1/2(ζ − 1)ν2.

Methodology. In this section, I proxy for the displacement term for the top 1%, 0.1%, and 0.01%

from 1916 to 2012 using the term predicted by the diffusion model 1/2(ζ−1)ν2. In the simplest model

presented in Section 2, the displacement term 1/2(ζ − 1)ν2 does not depend on the top percentile

p. This is driven by two key assumptions: the wealth distribution is assumed to be exactly Pareto

and the idiosyncratic volatility is assumed to be the same for all households. In a more realistic

setting, as shown in Proposition 8, the displacement term is
gt(qt)q2t

2St
ν2
t (qt), which varies along the

wealth distribution if
gt(qt)q2t

2St
varies along the wealth distribution, or if the idiosyncratic volatility

of wealth ν2
t (qt) depends on the wealth level.

I first estimate the shape of the wealth distribution
gt(qt)q2t

2St
at top percentiles 1%, 0.1%, and

0.01% using data on wealth thresholds, and top wealth shares from Kopczuk and Saez (2004) for

1916-1962, and Saez and Zucman (2016) for 1962-2012.35 Table 7 reports the estimated ζ for top

percentiles. Over the time period, ζ equals 1.5 for the Top 1% and 1.7 for the Top 0.01%. The

34See Footnote 24.
35I estimate the density around a top percentile from the difference in wealth threshold in the neighborhood of the

percentile.
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estimate ζ does not move much in the right tail of the distribution, which reflects the fact that the

wealth distribution is close to Pareto.

I estimate the idiosyncratic volatility at each percentile by interacting the share of wealth

invested in equity, using data from Kopczuk and Saez (2004) for 1916-1962, and Saez and Zucman

(2016) for 1962-2012, with the cross sectional standard deviation of firm-level returns, using data

from CRSP. I scale this product so that the idiosyncratic volatility of the top 0.01% matches

the idiosyncratic volatility of Forbes 400 in 1983-2012. Table 7 reports the estimated ν for top

percentiles. Over the time period, ν equals 14% for the Top 1%, and 21% for the top 0.01%. The

fact that ν increases in the right tail of the distribution reflects the fact that top percentiles tend

to invest more in equity. .

Results. Figure 7 plots the model-predicted displacement term 1/2(ζ − 1)ν2 for the top 1%, the

top 0.1%, and the top 0.01% from 1916 to 2012. The displacement term roughly follows a U-shape

for all top percentiles. The displacement term for the top 0.01% peaked at 2% during the Great

Depression, then steadily decreased, reaching its minimum in 1945. The displacement term again

increased starting in 1960, and reached its maximum at the height of the dot-com bubble. Overall,

the displacement term was roughly twice as high in 1983-2012 as it had been in the rest of the

century.

To understand better what drives the displacement term over time, Figure 8 plots separately

the term due to the wealth distribution 1/2(ζ − 1) and the term due to the idiosyncratic variance

of wealth ν2 for the top 0.01%. Most of the fluctuations in the model-predicted displacement term

arises from fluctuation in the idiosyncratic variance of wealth rather than fluctuations in the power-

law exponent of the wealth distribution. This is because the right tail of the distribution tends to

move slowly, as shown in Gabaix et al. (2016).

According to Saez and Zucman (2016), the yearly growth rate of the wealth share of the top

0.01% in 1982-2012 averaged to 4.3%, while the yearly growth rate of the top 1% averaged to 1.9%,

i.e. a difference of 2.4% per year. The results of Table 7 suggest that the differences in displacement

between the two percentiles can explain almost half of this gap.36

36A more detailed discussion is given in Appendix D.
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6 Implications

6.1 Inequality and Technological Innovation

I now examine the link between the growth of top wealth shares and technological innovation in

light of the accounting decomposition done in the previous sections.

One strand of the literature argues that a rise in technological innovation reduces inequality. For

instance, in Jones and Kim (2016), in periods of high innovation, existing businesses are disrupted,

which decreases the average growth of households at the top. Similarly, in Gârleanu et al. (2012),

positive shocks to the productivity of new capital depresses the returns of existing firms, which

decreases the average wealth growth of existing households. On the other hand, another strand

of the literature argues that a rise in technological innovation may increase inequality. In Kogan

et al. (Forthcoming) and Gârleanu and Panageas (2017), when technological innovation is high,

innovative entrepreneurs steal market share from less innovative entrepreneurs, which increases the

dispersion of wealth shocks among top households.

My empirical decomposition allows me to tease out these opposite effects by examining sep-

arately the effect of innovation on the within term and on the displacement term. I proxy for

technological innovation using the economic value of patents issued during the year. This measure

is constructed by Kogan et al. (2017) as follows: first, the value of each patent issued from public

firms is estimated using the stock market’s response to news about the patent, second, the measure

of economy-wide innovation is defined by aggregating the value of all patents every year, normalized

by the total market capitalization in the economy.

I examine the relation between innovation and the dispersion of wealth growth in Table 8. In

Column (1) I regress the variance of the log wealth growth of households in the top on aggregate

patent activity. The estimate for the slope is strongly significant, with a R2 equal to 36%: patent

innovation correlates strongly with the variance of log wealth growth. In Column (2) of Table 8,

I replace the variance of log wealth growth by the displacement term divided by (ζ − 1)/2. This

alternative measure potentially reflects the effect of innovation on displacement through higher-

order cumulants. The coefficient increases to 0.12. Overall, this suggests that a 10% increase of

patent innovation increases the growth of top wealth shares due to displacement by 0.3 percentage

points (= 1/2(1.5− 1)× 0.12× 0.1).

The effect of innovation on displacement weakens when using rougher proxies for inequality.

Column (3) regresses directly the displacement term on aggregate patent activity. The estimate is

only significant at the 10% level. This is because regressing the displacement term on innovation
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is misspecified, due to low-frequency changes in ζ.37 In Column (4), I regress directly the growth

of top wealth share on aggregate patent activity. The coefficient is not significant. A researcher

that simply regresses the growth on top wealth shares on innovation would not find any relation

between inequality and innovation. This is because the within term, which is very volatile masks

the relationship between the displacement term and innovation. In conclusion, the accounting

decomposition allows me to measure more precisely the role of innovation for top wealth inequality.

In conclusion, in periods of high innovation, the dispersion of wealth shocks rises which tends

to increase top wealth shares through displacement. This time series evidence relates this paper to

the cross sectional evidence of Aghion et al. (2015), that document a positive relationship between

innovation and top income inequality across U.S. states.

The reason innovation increases the dispersion of wealth shocks is that, when innovation is high,

households owning the innovative firms enter the top percentile, displacing the households that own

the non innovative firms. To test this channel directly, I regress a measure of firm innovation on a

dummy that is equal to one if the household enters the top in the year, and zero if the household is

already at the top in Table 9. As a proxy for the innovation of each firm in a given year, Column

(1) uses the number of patents of patents issued during the year, Column (2) uses the number of

their citations, and Column (3) uses their value using Kogan et al. (2017). To compare household

within the same year and industry, regressions are done with year and industry fixed effects. I find

that, compared to the households already at the top, households that enter the top percentile in

a given year tend to own firms that file twice the number of patents, with three times the total

number of citations, and with twice the economic value.

6.2 Inequality and Wealth Mobility

How does a rise in wealth inequality impacts wealth mobility? In this section, I show that whether

a rise in wealth inequality is driven by a rise in the average wealth growth of households at the top

(within term) or a rise in the dispersion of wealth shocks (displacement term) has opposite effects

on mobility.

While a rise in the wealth growth of households at the top unambiguously decreases wealth

mobility, the effect of a rise in the dispersion of wealth shocks on mobility is ambiguous. On the

one hand, the higher the dispersion of wealth shocks of households at the top, the more likely it is for

their wealth to decrease, which tends to increase mobility. On the other, the higher the dispersion of

37Since innovation is serially correlated, high innovation today is correlated with high innovation in previous years,

and therefore with a low power law exponent of the wealth distribution ζ. See Appendix D.
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wealth shocks, the more unequal the wealth distribution in the long run, and, therefore, the higher

the typical distance between a household in the top percentile and the lower percentile threshold.

To examine the overall effect of an increase in the dispersion of wealth shocks on mobility, I

focus on the average time a household in the top percentile remains in the top. The advantage of

this notion of “downward” mobility is that it only depends on the wealth dynamics of individuals

in the right tail of the distribution.38 Formally, for a household with wealth w, denote Tq(w) the

average time the household remains above the wealth threshold q (also called the “average first

passage time”), i.e.

Tq(w) ≡ E[inf{τ s.t. wit+τ ≤ q or i dies }|wit = w] (27)

In the remaining of the section, I assume that the law of motion of wealth is given by

dwit
wit

= µdt+ νdBit (28)

with death rate δ > 0. Having a positive death rate ensures that the average first passage time is

always finite.

Lemma 1 (Average First Passage Time). When wealth follows the law of motion (28), the average

first passage time for w ≥ q is:39

Tq(w) =
1

δ

(
1−

(
w

q

)ζ−)
(29)

where ζ− is the negative zero of ζ → µζ + ζ(ζ−1)
2 ν2 − δ.

This lemma gives a closed-form formula for the average time a household with initial wealth

w remains above a wealth threshold q. Naturally, the first passage time increases in w/q. As the

household wealth w converges to q, this time converges to zero. As w converges to infinity, this

time converges to 1/δ. The first passage time is a power law in w/q. The exponent ζ− captures

how fast the first passage time increases as the household wealth increases.

The average first passage time Tq(w) increases in the average wealth growth of individuals µ

but decreases in the idiosyncratic volatility ν.40 Intuitively, the higher the dispersion of wealth

38In particular, compared to a notion of “upward” mobility, it allows me to abstract from the role of labor income

or government programs.
39The average first passage time of a Brownian Motion is a classic result, for instance see Karlin and Taylor (1981).

This formula simply generalizes it to the case of a process with Brownian Motion with death probability.
40See the proof in Appendix E.
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shocks, the more likely it is to have a negative wealth shock, therefore, the more likely it is for the

wealth of an household to drop below q.

While an increase in idiosyncratic volatility decreases the average first passage time at a given

wealth level, it also increases in the long run the typical distance between individuals. To determine

the overall effect of idiosyncratic volatility on mobility, one needs to take this long run adjustment

into account. Instead of considering the average first passage time for a household with given

wealth level, I examine the average first passage time for an average household in a top percentile

p, denoted T (p). Formally,

T (p) ≡ Eg[Tq(wit)|wit ≥ q] (30)

where q denotes the wealth at the lower threshold of the top percentile p and Eg denotes the

cross-sectional average with respect to the wealth density g.

Proposition 6 (Average First Passage Time for an Average Household with Inheritance and

Population Growth). Consider the stationary distribution in an economy where household wealth

follows the process given in (A28) with death rate δ, inheritance parameter χ, and population growth

η. Then, the average time someone in the top percentile p remains in the top percentile is:

T (p) =
1

δ(1− ζ+/ζ−)
(31)

where ζ− is defined in Lemma 1, i.e. the negative zero of ζ → µζ + ζ(ζ−1)
2 ν2 − δ and ζ+ denotes

the Pareto tail of the stationary wealth distribution, i.e. the positive zero of ζ → µζ + ζ(ζ−1)
2 ν2 +

(χζ − 1)δ + (ζ − 1)η

This formula characterizes in closed-form the average passage time for a household in the top

percentile p. Strikingly, the average first passage time of an average household in the top percentile

p, T (p), does not depend on the top percentile p.

The average first passage time depends on the ratio between ζ+ and ζ−. Intuitively, −ζ− controls

the average first passage time from a given distance to the threshold, while ζ+ corresponds to the

power law exponent of the right tail of the stationary wealth distribution. Both statistics matter

to determine the first passage time for an average household in the top percentile.

As the average wealth growth of top households µ increases, T increases (i.e. mobility decreases).

This is due to two reasons. First, the average first passage time at a given wealth level increases

(−ζ− increases). Second, in the long run, the wealth distribution becomes more unequal, which

increases the typical distance between a household in the top percentile and the lower percentile

threshold (ζ+ decreases). These two forces combine to decrease mobility.
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In contrast, as the idiosyncratic volatility of wealth ν increases, T tends to decrease (i.e. mobility

increases). On the one hand, as ν increases, the average first passage time before at a given wealth

level decreases, which tends to increase mobility (−ζ− decreases). On the other, in the long run,

the wealth distribution becomes more unequal, which increases the typical distance between a

household in the top percentile and the lower percentile threshold (i.e. ζ+ decreases). For realistic

parameters, this long-run effect on the wealth distribution is not strong enough to compensate the

first force. Overall, mobility increases.

To take a simple example, suppose that, in the initial pre-1980 economy, the relative wealth

growth of top households is µ = 0%, the idiosyncratic volatility is ν = 10%, the death rate is

δ = 2% with inheritance parameter χ ≈ 50%, and the population rate is 1.5%.41 Proposition 6

says that, in this economy, the average time a top household remains in a top percentile is T ≈ 25

years. Now, suppose that the relative wealth growth of top households increases permanently to

µ = 2% and that the idiosyncratic volatility of wealth growth increases to ν = 27%.42 Applying

Proposition 6, I obtain that the average time a top household remains at the top becomes T ≈ 20

years. Even though wealth inequality increase between these two states, wealth mobility slightly

increases. This supports the empirical findings of Kopczuk et al. (2010), which find that, even

though labor inequality increased at the end of the 20th century, labor mobility remained constant.

My theoretical framework suggests that wealth mobility will remain higher even as wealth inequality

continues to increase.

7 Conclusion

This paper stresses the importance of composition effects on the dynamics of inequality. I document

that half of the rise of the wealth share of the top 400 is driven by displacement, i.e. the entry

and exit of households in top percentiles. This empirical result contradicts the “rich getting richer”

hypothesis, which posits that the rise in top wealth shares is exclusively due to the average wealth

growth of households in top percentiles. I show that the growth of top wealth shares due to

displacement is well approximated 1/2(ζ − 1)ν2, where ζ denotes the power law exponent of the

wealth distribution and ν denotes the idiosyncratic volatility of wealth. This formula is useful to

41I choose the death rate, inheritance parameter and population growth to match the demography term of Forbes

400 in 1983-2917 (see Table A4). I choose the idiosyncratic volatility to target the average idiosyncratic volatility

for the top 0.01% in 1960-1980 from Section 5. I choose the drift µ so that the Pareto tail of the stationary wealth

distribution is 1.8.
42The value of µ and ν are taken from the average accounting decomposition (see Table 1).
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understand the drivers displacement, as well as the role of displacement in setups where panel data

is not available. Finally, I document a positive relationship between displacement and technological

innovation. In particular, the slow-down of displacement in the last two decades seems to reflect

the recent decline in business dynamism documented in Decker et al. (2016b).

The implications of my analysis extend beyond the literature on wealth inequality. Economic

studies have recently documented rising concentrations in other areas, such as in the distribution of

labor income (Piketty and Saez (2003)) or in the distribution of firms’ market shares (Autor et al.

(2017)). The tools developed here could easily be adapted to these other settings. In particular, the

comovement of the dispersion of wealth shocks and the dispersion of firm-level returns suggests a

deep link between the recent rise in wealth concentration and the recent rise in firm concentration.

Understanding better this connexion is an important direction for future research.
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Figure 1: Growth of Top Wealth Share St due to Idiosyncratic Volatility

(a) Growth of St due to Entry
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gt

qtqt
1+νt

√
dt

w (1 + ν
√
dt)w

During a short period of time dt, individuals below the top percentile p with a positive wealth shock may enter the top percentile.

The entry of an individual with initial wealth w increases wealth in the top by the difference between their new wealth and the

wealth of the last individual in the top, i.e. (1 + νt
√
dt)w− qt. Summing this quantity over the mass of individuals with initial

wealth between qt/(1 + νt
√
dt and qt, the growth of the top wealth share due to entry can be written as:

drentry ≈
∫ qt

qt/(1+νt
√
dt)

(1 + νt
√
dt)w − qt

2St
gt(w)dw ≈

gt(qt)q2t
4St

ν2t dt

(b) Growth of St due to Exit

w

gt

qt qt
1−νt

√
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w(1− νt
√
dt)w

During a short period of time dt, individuals in the top percentile p with a negative wealth shock may exit the top percentile.

The exit of an individual with initial wealth w increases wealth in the top by the difference between the wealth of the last

individual at the top that replaces them and their new wealth, i.e. qt − (1− νt
√
dt)w. Summing this quantity over the mass of

individuals with initial wealth between qt and qt/(1− νt
√
dt, the growth of the top wealth share due to exit can be written as:

drexit ≈
∫ qt/(1−νt

√
dt)

qt

qt − (1− νt
√
dt)w

2St
gt(w)dw ≈

gt(qt)q2t
4St

ν2t dt
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Figure 2: Cumulative Growth of Wealth Share Top 0.01% Tracks Forbes 400
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Notes. The figure plots the cumulated growth of top wealth shares for groups defined in the top Forbes percentile, which

includes 400 households in 2017. Data for the top 10%, 1%, 0.1%, 0.01% is from Saez and Zucman (2016).

Figure 3: Decomposing the Cumulative Growth of Forbes 400 Wealth Share
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Notes. The figure plots the growth of the wealth share of the top percentile, as well as its accounting decomposition using

Equation (21). It plots the cumulative log terms, i.e. the sum of log terms from 1983 to t. The plot for the within term, the

displacement term, and the demography term approximately sum up to the total growth of the top wealth share. Data from

Forbes 400.
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Figure 4: Displacement Term: Data vs Theory
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Figure 4 plots the displacement term (defined in Proposition 5) as well as the term predicted by the random-growth model for

a diffusion model (normal shocks) and a jump diffusion (non-normal shocks). The power law exponent ζ is estimated yearly

using ζ− 1 = gt(qt)q2t /St, where the density gt(qt) is estimated from the mass of households with a wealth 30% higher or lower

than qt. The variance is estimated using the corresponding sample moments of the log wealth growth among households in

the top in a given year. The term with all higher-order cumulants is computed as log E[R̃ζ ]
1
ζ where R̃ denotes the normalized

wealth growth of households at the top. Data from Forbes 400.
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Figure 5: Contribution of ζ and ν to Displacement
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Figure 5 decomposes the model-predicted term into its two components, (ζ − 1)/2 and ν2. The power law exponent of the

wealth distribution ζ is estimated yearly using ζ − 1 = gt(qt)q2t /St, where the density gt(qt) is estimated from the mass of

households with a wealth 30% higher or lower than qt. The variance of wealth growth ν2 is estimated using the corresponding

sample moments of the log wealth growth among households in the top in a given year. The product of the term equals the

model-predicted term with normal shocks 1/2(ζ − 1)ν2. Data from Forbes 400.

Figure 6: Displacement Within and Between Industries
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Notes. The table decomposes the model-predicted displacement term 1/2(ζ − 1)ν2 into a displacement “within” industries

1/2(ζ − 1)ν2within and a displacement “between” industries 1/2(ζ − 1)ν2between. The decomposition follows from the law of total

variance: the variance of wealth growth ν2 is the sum of the average variance within groups ν2within and the variance between

groups ν2between. Industries are defined using the Fama-French 49 industry classification. Data from Forbes 400.
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Figure 7: Model-Predicted Displacement Term
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Figure 7 plots the model-predicted displacement term (ζ − 1)/2ν2 for the Top 0.01%, 0.1%, and 1%. The power law exponent

ζ is estimated as 1/(1− qt
St/p

). The idiosyncratic volatility of wealth ν is estimated by interacting the share of wealth invested

in equity at each percentile with half of the idiosyncratic volatility of firm-level returns. Data from Kopczuk and Saez (2004)

and Saez and Zucman (2016).

Figure 8: Contribution of ζ and ν to Model-Predicted Displacement
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Figure 8 decomposes the model-predicted displacement term into its two components, (ζ−1)/2 and ν2. The power law exponent

of the wealth distribution ζ is estimated yearly using ζ − 1 = gt(qt)q2t /St. The idiosyncratic volatility at each percentile ν is

estimated by interacting the share of wealth invested in equity at each percentile with the idiosyncratic volatility of firm-level

returns. The product of the term equals the model-predicted term with normal shocks 1/2(ζ − 1)ν2. Data from Kopczuk and

Saez (2004) and Saez and Zucman (2016).
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Table 1: Decomposing the Growth of Top Wealth Share

Period Total (%) Rwithin (%) Rdisplacement (%) Rdemography (%)

All Years 3.9 1.9 2.3 −0.3

1983-1993 4.3 1.5 3.0 −0.1

1994-2004 3.7 1.6 2.5 −0.3

2005-2016 3.7 2.7 1.4 −0.5

Notes. The table reports the geometric average of the growth of the wealth share of the top 0.0003% Rtotal, as well as the

geometric average of the within term Rwithin, the displacement term Rdisplacement, and the demography term Rdemography ,

as defined in Proposition 5. All terms in percentage. Data from Forbes 400.

Table 2: Power-law Exponent and Cumulants of Wealth Growth

Period Power-law (ζ) Volatility (ν) Skewness (sk) Excess Kurtosis (kurt)

All Years 1.5 0.27 −0.35 4.70

1983-1993 1.8 0.28 −0.24 4.10

1994-2004 1.4 0.31 −0.37 4.90

2005-2016 1.4 0.23 −0.44 5.07

Notes. The table reports summary statistics on the power-law exponent of the wealth distribution and higher-order cumulants

of log wealth growth. The power law exponent of the wealth distribution ζ is estimated yearly as 1 + gt(qt)q2t /St, where the

density gt(qt) is estimated from the mass of households with a wealth 30% higher or lower than qt. The variance, skewness

and kurtosis of wealth growth are estimated yearly using the corresponding sample moments of the log wealth growth among

households in the top in a given year. Data from Forbes 400.
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Table 3: Displacement Predicted by Diffusion-Jump Model

Year Rdisplacement

Total (%) Displacement Predicted by All Cumulants
∑+∞

2
ζj−1
j!

κj (%) ε (%)

Total Variance Term Skewness Term Kurtosis Term Higher-Order Term

ζ−1
2
ν2 ζ2−1

6
ν3 · sk ζ3−1

24
ν4 · kurt

∑+∞
5

ζj−1
j!

κj

All Years 2.3 2.1 2.0 −0.2 0.3 0.0 0.2

1983-1993 3.0 3.2 2.9 −0.2 0.5 0.0 −0.2

1994-2004 2.5 1.9 1.9 −0.3 0.4 0.0 0.6

2005-2016 1.4 1.2 1.2 −0.1 0.1 0.0 0.2

Notes. The table reports the geometric average of the displacement term, the average displacement term predicted by the

diffusion-jump model, as well as their difference ε. The term predicted by diffusion-jump is split into different cumulants.

The power law exponent of the wealth distributionζ is estimated yearly using ζ − 1 = gt(qt)q2t /St, where the density gt(qt) is

estimated from the mass of households with a wealth 30% higher or lower than qt. The cumulants are estimated yearly using

the cross-section of the log wealth growth of households in the top. Data from Forbes 400.

Table 4: Role of Industry Shocks for Displacement

Year Rdisplacement

Total (%) Displacement Predicted by Variance 1/2(ζ − 1)ν2 (%) ε (%)

Total Within Industries Between Industries

All Years 2.3 2.0 1.6 0.4 0.3

1983-1993 3.0 2.9 2.3 0.6 0.0

1994-2004 2.5 1.9 1.5 0.4 0.6

2005-2016 1.4 1.2 1.0 0.2 0.2

Notes. The table decomposes the model-predicted displacement term 1/2(ζ − 1)ν2 into a displacement “within” industries

1/2(ζ − 1)ν2within and a displacement “between” industries 1/2(ζ − 1)ν2between. The decomposition follows from the law of total

variance: the variance of wealth growth ν2 is the sum of the average variance within groups ν2within and the variance between

groups ν2between. Groups are defined by industry appurtenance of households, using the Fama-French 49 industry classification.

Data from Forbes 400.
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Table 5: Regressing the Variance of Wealth Growth on the Variance of Stock Returns

ν2

(1)

Variance of Firm-Level Returns 0.18∗∗∗

(0.05)

Constant 0.02

(0.02)

R2 0.47

Period 1983-2016

N 34

Notes. The table reports the results of the regression of the cross-sectional variance of wealth growth for households at the

top percentile ν on the cross-sectional variance of firm-level returns.

Estimation via OLS. Standard errors in parentheses and estimated using Newey-West with 3 lags. ∗,∗∗,∗∗∗ indicate significance

at the 0.1, 0.05, 0.01 levels, respectively. Data from Forbes 400 and CRSP.

Table 6: Wealth Growth is Serially Uncorrelated

Future Wealth Growth

(1)

Current Wealth Growth −0.01

(0.01)

Constant 0.04∗∗∗

(0.00)

R2 0.20

Period 1983-2016

FE Individual

N 11,453

Notes. The table reports the result of a regression of future wealth growth on current wealth growth, i.e. denoting wit the

wealth of household i at time t,

log

(
wit+2

wit+1

)
= αi + β log

(
wit+1

wit

)
+ ε

Estimation via OLS. Standard errors in parentheses and estimated using Newey-West with 3 lags. ∗,∗∗,∗∗∗ indicate significance

at the 0.1, 0.05, 0.01 levels, respectively. Data from Forbes 400.
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Table 7: Displacement Along the Wealth Distribution

Top 1% Top 0.1% Top 0.01% Top 400

Panel A: 1926-2012

Power-law ζ 1.5 1.6 1.7

Idiosyncratic Volatility ν (%) 0.14 0.17 0.21

Displacement Term 1/2(ζ − 1)ν2 (%) 0.5 0.9 1.4

Panel B: 1983-2012

Power-law ζ 1.5 1.5 1.6 1.5

Idiosyncratic Volatility ν (%) 0.20 0.23 0.28 0.28

Displacement Term 1/2(ζ − 1)ν2 (%) 1.1 1.5 2.2 2.1

Notes. The local power law exponent ζ is estimated as 1/(1− qt
St/p

). The idiosyncratic volatility of wealth ν is estimated by

interacting the share of wealth invested in equity at each percentile with half of the idiosyncratic volatility of firm-level returns.

Data from from Kopczuk and Saez (2004) and Saez and Zucman (2016).

Table 8: Regressing Measures of Wealth Inequality on Aggregate Patent Activity

ν2 Rdisplacement

/(
1/2(ζ − 1)

)
Rdisplacement Rtotal

(1) (2) (3) (4)

Aggregate Patent Activity 0.07∗∗∗ 0.12∗∗∗ 0.01∗ 0.07

(0.02) (0.03) (0.01) (0.08)

Constant 0.71∗∗∗ 1.23∗∗∗ 0.13∗∗ 0.74

(0.23) (0.30) (0.06) (0.74)

R2 0.36 0.42 0.07 0.06

Period 1983-2008 1983-2008 1983-2008 1983-2008

N 26 26 26 26

Notes. The table reports the result of measures of wealth inequality on aggregate patent activity. Aggregate patent activity

is defined as the log-ratio between the total market value of patents issued in a given year and the total market capitalization

of U.S. firms, as constructed in Kogan et al. (2017). The dependent variables are: the yearly cross-sectional variance of wealth

shocks (first column), the displacement term divided by (ζ − 1)/2 (second column), the displacement term (third column), and

the net growth of top wealth share (fourth column).

Estimation via OLS. Standard errors in parentheses and estimated using Newey-West with 3 lags. ∗,∗∗,∗∗∗ indicate significance

at the 0.1, 0.05, 0.01 levels, respectively. Data from Kogan et al. (2017) and Forbes 400.
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Table 9: Patent Activity of New Entry

Patent Activity of Firms

Number of Patents Number of Patent Citations Market-Value of Patents

(1) (2) (3)

Entry 0.008∗∗∗ 0.197∗∗∗ 0.097∗∗∗

(0.003 ) (0.056 ) (0.030 )

E[Y ] 0.008 0.120 0.180

R2 0.31 0.24 0.53

Period 1983-2009 1983-2009 1983-2009

FE Year, Industry Year, Industry Year, Industry

N 690 690 690

Notes. The table reports the results of regressions of firm-level patent activity on a entry dummy, on the sample of the firms

in the top at time t or entering the top. Measures of patent activity are respectively the number of patents, the number of total

citations, and the market-value of patents, divided by the firm market value.

Estimation via OLS. Standard errors in parentheses. ∗,∗∗,∗∗∗ indicate significance at the 0.1, 0.05, 0.01 levels, respectively.

Data from Kogan et al. (2017) and Forbes 400.
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A Appendix for Section 2

Proof of Proposition 1. Applying Ito’s lemma on the implicit definition of quantile p =
∫ +∞
qt

gt(w)dw gives

the law of motion of the quantile qt

0 = −gt(qt)
dqt
dt

+

∫ +∞

qt

dgt(w)

dt
dw (A1)

Applying Ito’s lemma on St =
∫ +∞
qt

gt(w)dw gives the law of motion of St:

dSt = −qtgt(qt)dqt +

∫ ∞
qt

wdgt(w)dw (A2)

Injecting the law of motion for qt, we obtain the law of motion for St:

dSt =

∫ ∞
qt

(w − qt)dgt(w)dw (A3)

During a small time period dt, a net mass
∫ +∞
qt

dgt(w)dw of households enter the top percentile. Because

population size in the top percentile is held constant, an equal mass of households at the threshold must

exit the top percentile, with a wealth qt. The formula expresses that the total change in St is given by the

difference between the wealth change due to entry and the wealth change due to exit.

The Kolmogorov Forward equation corresponding to the wealth process is

dgt = −∂w(µtdtwgt(w)) + ∂2
w(ν2

t dtw
2gt(w)/2) (A4)

Substituting the law of motion for dgt (A4) into (A3), and integrating by parts:

dSt =

∫ ∞
qt

(w − qt)(−∂w(µtdtwgt(w)) + ∂2
w(ν2

t dtw
2gt(w)/2))dw

= −
∫ +∞

qt

(−µtdtwgt(w) + ∂w(ν2
t dtw

2gt(w)/2)dw

= µtStdt+
gt(qt)q

2
t

2
ν2
t dt (A5)

For the sake of completeness, I also give the law of motion of top quantiles in the baseline model, which

is originally proven in Steinbrecher and Shaw (2008).

Proposition 7 (Dynamics of Quantile). Assume that the law of motion for wealth is given by (1). Then

the top quantile qt follows the law of motion:

dqt
qt

= µtdt−
1

2

∂w(w2gt(w))

gt(qt)qt
ν2
t dt (A6)
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Proof of Proposition 7. Combining the definition of the quantile (A1) with the Kolmogorov Forward equation

(A4), we obtain

dqt =
1

gt(qt)

∫ +∞

qt

dgtdw

=
1

gt(qt)

∫ +∞

qt

(−∂w(µtdtwgt(w)) +
1

2
∂2
w(ν2

t dtw
2gt(w))dw

= µtqtdt−
1

2

∂w(w2gt(w))

gt(qt)
ν2
t dt (A7)

Proof of Proposition 2. The density function gt and the quantile function qt(g) can be expressed as the

derivatives of the top wealth share function: ∂pSt = qt and ∂ppSt = −1/gt(qt).

Therefore, Proposition 1 can be rewritten as a PDE on the top wealth share function p→ St(p):
43

∂tSt
St

= µtdt−
∂pS

2
t

2St∂ppSt
ν2
t dt (A8)

For a distribution with Pareto tail ζ, we have S(p) = Cp1− 1
ζ , therefore

∂tSt
St

= µtdt+
ζ − 1

2
ν2
t dt (A9)

I now examine the case in which the distribution only has a heavy tail, i.e. P(wit ≥ w) = L(w)w−ζ where

L(w) is a slowly varying function, with a density function gt that is ultimately monotone. In this case, the

Karamata theorem gives, as w → +∞:44

gt(w) ∼ ζL(x)w−ζ−1 (A10)

St(w) ∼ ζ

ζ − 1
L(x)w−ζ+1 (A11)

Therefore, as w → +∞:

gt(w)w2

St(w)
∼ ζ − 1 (A12)

Proposition 8 (Dynamics of Top Wealth Share with Scale Dependence). Assume that the law of motion

for wealth is given by (10). Then the top wealth share St follows the law of motion:

dSt
St

= Egw[µt(w)|w ≥ qt]dt︸ ︷︷ ︸
drwithin

+
gt(qt)q

2
t

2St
ν2
t (qt)dt︸ ︷︷ ︸

drdisplacement

(A13)

where Egw denotes the wealth-weighted cross-sectional average along the wealth distribution.

43 This PDE can be used to generate the evolution of the wealth distribution for a given path of µt, νt over time,

although the PDE is not linear in St, contrary to Kolmogorov Forward.
44For instance, see Mikosch (1999).
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Proof of Proposition 8. The Kolmogorov Forward equation corresponding to the wealth process is

dgt = −∂w(µt(w)dtwgt) + ∂2
w(ν2

t (w)dtw2gt/2) (A14)

Substitute this equation into (A2) and integrate by part to obtain that

dSt
St

=

∫∞
qt
µt(w)wdtgt(w)dw

St︸ ︷︷ ︸
drwithin

+
gt(qt)q

2
t

2St
ν2
t (qt)dt︸ ︷︷ ︸

drdisplacement

(A15)

Proposition 9 (Dynamics of Top Wealth Share with Aggregate Risk). Assume that the law of motion for

wealth is

dwit
wit

= µtdt+ σtdZt + νtdBit (A16)

where Zt = {Zit ∈ R,Ft, t ≥ 0} is an aggregate Brownian motion. Then the top wealth share St follows the

law of motion:

dSt
St

= µtdt+ σtdZt︸ ︷︷ ︸
drwithin

+
gt(qt)q

2
t

2St
ν2
t dt︸ ︷︷ ︸

drdisplacement

(A17)

Proof of Proposition 9. Applying Ito’s lemma on the implicit definition of quantile p =
∫ +∞
qt

gt(w)dw gives

the law of motion of the quantile qt

0 = −gt(qt)
dqt
dt

+

∫ +∞

qt

dgt(w)

dt
dw − σt[dgt(qt)]σt[dqt] (A18)

where σt[dgt(qt)] and σt[dqt] denote the exposure of gt(qt) and qt to aggregate shocks.

Applying Ito’s lemma on St =
∫ +∞
qt

gt(w)dw gives the law of motion of St:

dSt = −qtgt(qt)dqt +

∫ ∞
qt

wdgt(w)dw − qtσt[dgt(qt)]σt[dqt]dt−
1

2
gt(qt)σt[dqt]

2dt (A19)

Injecting (A18) into (A19), we obtain:

dSt =

∫ ∞
qt

(w − qt)dgt(w)dw − 1

2
gt(qt)σt[dqt]

2dt

=

∫ ∞
qt

(w − qt)dgt(w)dw − 1

2

1

gt(qt)
(

∫ ∞
qt

σt[dgt(w)]dw)2dt (A20)

The Kolmogorov Forward equation corresponding to the wealth process with aggregate risk is:45

dgt = −∂w(µtdtwgt + σtwdZt) + ∂2
w((σ2

t + ν2
t )dtw2gt/2) (A21)

45See Gomez (2016) for an heuristic derivation.
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Substituting the law of motion for dgt from the Kolmogorov Forward equation with aggregate risk and

integrating by parts:

dSt =

∫ ∞
qt

(w − qt)(−∂w((µtdt+ σtdZt)wgt(w)) + ∂2
w((σ2

t + ν2
t )dtw2gt(w)/2)

− 1

2

1

gt(qt)
(

∫ +∞

qt

∂w(σtwgt(w)dw))2dt

=−
∫ +∞

qt

(−(µtdt+ σtdZt)wgt(w) + ∂w((σ2
t + ν2

t )dtw2gt(w)/2))dw

− 1

2

1

gt(qt)
(

∫ +∞

qt

∂w(σtwgt(w)dw))2dt

= µtStdt+ σtStdZt +
gt(qt)q

2
t

2
ν2
t dt (A22)

Proposition 10 (Dynamics of Top Wealth Share with Heterogeneity). Assume that the law of motion for

wealth is given by (12). Then the top wealth share St follows the law of motion:

dSt
St

= Egw[µnt|wit ≥ qt]dt+ Egw[σnt|wit ≥ qt]dZt︸ ︷︷ ︸
drwithin

+
gt(qt)q

2
t

2St
(Egw[ν2

nt|wit = qt] + Varwg[σnt|wit = qt])dt︸ ︷︷ ︸
drdisplacement

(A23)

where Egw denotes the wealth-weighted cross-sectional average along the wealth distribution.

Proof of Proposition 10. Denote πn the population share of group n and gnt the density of wealth within

group n. The density of wealth in the economy is the sum of the wealth density within each group:

gt =
∑

1≤n≤N

πngnt (A24)

Therefore, the law of motion of gt in terms of the law of motion of gnt is:

dgt =
∑

1≤n≤N

πndgnt (A25)

Applying the law of motion for St in terms of gt (A20) and the Kolmogorov Forward Equation for gnt for

1 ≤ n ≤ N (A21), we obtain:

dSt =

∫ ∞
qt

(w − qt)
∑

1≤n≤N

πn
(
−∂w((µntdt+ σntdZt)wgnt(w)) + ∂2

w((ν2
nt + σ2

nt)dtw
2gnt(w)/2)

)
dw

− 1

2

1

gt(qt)
(

∫ +∞

qt

∑
1≤n≤N

πn∂w(πnσntwgnt(w)dw))2dt (A26)
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Integrating by parts and dividing by St, we obtain the law of motion of top wealth share St:

dSt
St

=

∫ +∞
qt

∑
1≤n≤N (µntdt+ σntdZt)wπngnt(w)dw

St

+
gt(qt)q

2
t

2St

 ∑
1≤n≤N

πngnt(qt)

gt(qt)
ν2
nt +

∑
1≤n≤N

πngnt(qt)

gt(qt)
σ2
nt −

 ∑
1≤n≤N

πngnt(qt)

gt(qt)
σnt

2
 dt (A27)

I now examine the case in which wealth follows a jump-diffusion process, i.e.

dwjt
wjt−

= µtdt+ νtdBit + (eJit − 1)dNit (A28)

whereNit is an idiosyncratic jump process with intensity λt. The innovations Jit are drawn from an exogenous

distribution such that Ef [eJit ] = 1, where Ef denotes the expectation with respect to the jump density ft.

In other words, jumps do not change the average wealth growth of households.

Proposition 11 (Dynamics of Top Wealth Share with Jumps). Assume that the law of motion for wealth

is given by (A28). Then the top wealth share St follows the law of motion:

dSt
St

= µtdt︸︷︷︸
drwithin

+
gt(qt)q

2
t

2St
ν2
t dt+

λtdt

St
Ef [

∫ qt

qte−J
(eJw − qt)gt(w)dw]︸ ︷︷ ︸

drdisplacement

(A29)

Proof of Proposition 11. I first present an heuristic derivation, and then a formal derivation.

Heuristic Derivation Idiosyncratic jumps increase top shares for two reasons. First, some lucky house-

holds below the top percentile with positive shock enter the top percentile. Because population size in the

top percentile is held constant, this displaces marginal households at the threshold with wealth qt. Second,

some unlucky households inside the top with negative jumps exit the top percentile. They are replaced by

marginal households at the threshold with wealth qt. The total growth of top wealth share due to entry and

exit is given by:

drjump =
λtdt

St
Ef [

∫ qt

0

(eJw − qt)+gt(w)dw] +
λtdt

St
Ef [

∫ +∞

qt

(qt − eJw)+gt(w)dw] (A30)

Formal Derivation The Kolmogorov Forward equation corresponding to the wealth process is

dgt = −∂w(µtdtwgt) + ∂2
w(ν2

t dtw
2gt/2) + λtdtE

f [e−Jgt(we
−J)− gt(w)]. (A31)
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Substituting the law of motion for dgt from the Kolmogorov Forward equation and integrating by parts:

dSt =

∫ ∞
qt

(w − qt)(−∂w(µtdtwgt(w)) + ∂2
w(ν2

t dtw
2gt(w)/2)

+ λ

∫ +∞

qt

(w − qt)(Ef [e−Jgt(we
−J)]− gt(w))dw

=−
∫ +∞

qt

(−µtdtwgt(w) + ∂w(ν2
t dtw

2gt(w)/2))dw

+ λ

∫ +∞

qt

(w − qt)(Ef [e−Jgt(we
−J)]− gt(w))dw

= µtStdt+
gt(qt)q

2
t

2
ν2
t dt+ λtdt

∫ +∞

qt

(w − qt)(Ef [e−Jgt(we
−J)]− gt(w))dw (A32)

The term due to jump can be rewritten as a summation with respect to the wealth pre-jump. Denoting

ft the density function of jump sizes Jit, we have:∫ +∞

qt

(w − qt)(Ef [e−Jgt(we
−J)]− gt(w))dw =

∫ +∞

qt

(w − qt)
∫ +∞

J=−∞
(e−Jgt(we

−J)− gt(w))ft(J)dJ

=

∫ +∞

J=−∞
ft(J)dJ

∫ +∞

qt

(w − qt)(e−Jgt(we−J)− gt(w))dw

=

∫ +∞

J=−∞
ft(J)dJ(

∫ +∞

qt

(w − qt)e−Jgt(we−J)dw −
∫ +∞

qt

(w − qt)gt(w)dw)

=

∫ +∞

J=−∞
ft(J)dJ(

∫ +∞

qte−J
(eJw − qt)gt(w)dw −

∫ +∞

qt

(w − qt)gt(w)dw)

=

∫ +∞

J=−∞
ft(J)dJ(

∫ qt

qte−J
(eJw − qt)gt(w)dw +

∫ ∞
qt

(eJ − 1)wgt(w)dw)

= Ef [

∫ qt

qte−J
(eJw − q)gt(w)dw].

This concludes the proof.

Proposition 12 (Dynamics of Top Wealth Share with Jumps and Pareto Distribution). Suppose that the

law of motion of relative wealth wit is (1), with a maximum jump size J and that the wealth distribution at

time t is Pareto with power law exponent ζ for a wealth level higher than qte
−J . Then the law of motion of

the top wealth share St follows the law of motion:

dSt
St

= µtdt︸︷︷︸
drwithin

+
ζ − 1

2
ν2
t dt+ λtdt

Ef [eJitζ ]− 1

ζ︸ ︷︷ ︸
drdisplacement

(A33)

Alternatively, it can be written as

dSt
St

=
1

ζ
Et

[
dwζit

wζit

]
(A34)

= µtdt︸︷︷︸
drwithin

+

+∞∑
2

ζj−1 − 1

j!
κjt︸ ︷︷ ︸

drdisplacement

(A35)

Moreover, the term due to jumps is positive and increases in ζ.
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Proof of Proposition 12. When the distribution is Pareto, the growth of top wealth shares due to jumps can

be written

1

St
Ef [

∫ qt

qte−J
(eJw − qt)L(w)gt(w)dw] =

1

St
Ef [

∫ qt

qte−J
(eJw − qt)Cw−ζ−1dw]

=
1

q1−ζ
t /(ζ − 1)

Ef [[eJ
x1−ζ

1− ζ
+ qt

x−ζ

ζ
]qt
qte−J

]]

=
1

q1−ζ
t /(ζ − 1)

Ef [eJ
q1−ζ
t

1− ζ
+
q1−ζ
t

ζ
− eJe(−J)(1−ζ) q

1−ζ
t

1− ζ
− e(−J)(−ζ) q

1−ζ
t

ζ
]

= Ef [
eJζ − 1

ζ
− (eJ − 1)]

=
Ef [eJζ ]− 1

ζ
I now prove that the jump term increases in ζ. The derivative of the jump term with respect to ζ is

ζ → λdt
m′(ζ)ζ − (m(ζ)− 1)

ζ2
(A36)

where m(ζ) = Ef [eJζ ]. The function m is convex and equals to zero in zero and 1, therefore m′(1) ≥ 0.

Since the derivative of the numerator is nonnegative, the numerator is always nonnegative, and therefore the

jump term increases in ζ.

Using Ito’s lemma, one obtains:

1

ζ
Et

[
dwζit

wζit

]
= µtdt+

ζ − 1

2
ν2
t dt+ λtdt

Ef [eJitζ ]− 1

ζ
(A37)

which gives Equation (A34).

Finally, define κjt as the coefficients in the power expansion of Et[dw
ζ
it/w

ζ
it], i.e.

Et

[
dwζit

wζit

]
=

+∞∑
j=1

ζj

j!
κjtdt (A38)

Plugging this into (A34) gives Equation (A35).

κjt can be called the “instantaneous” cumulant because it can also be defined as the derivative of the

j−th cumulant of wealth growth between t and t+ τ , at τ = 0. To see this, note that:

Et

[
dwζit

wζit

]
=

(
lim
τ→0

1

τ
logEt

wζit+τ

wζit

)
dt =

+∞∑
j=1

ζj

j!

(
lim
τ→0

κjt(τ)

τ

)
dt (A39)

where κjt(τ) denotes the j−th cumulant of wealth growth between t and t+ τ .

Proof of Proposition 3. The Kolmogorov Forward Equation is

dgt = −∂w(µtdtwgt) + ∂2
w(ν2

t dtw
2gt/2)− ηdtgt(w) + δdt

(
g(w/χ)

χ
− g(w)

)
(A40)

We obtain the dynamics of the top wealth share St by following the same steps as the proof of Proposition 1.
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Proof of Proposition 4. When the wealth distribution is power law with Pareto tail ζ, we have πt = χζ , and

therefore St(πp) = χζ−1St(p). Therefore, the term due to death can be written as

drdeath =

(
χSt(πtp) + (1− πt)qtp

St
− 1

)
δdt+

qtp

St
ηdt

− ((χζ + (1− χζ)(1− 1

ζ
)− 1)δdt

=
χζ − 1

ζ
δdt (A41)

Note that the term is similar to the term that would be generated by a jump process of intensity δ and size

− log(χ). As shown in the proof of Proposition 11, the term increases in ζ.

B Appendix for Section 3

Proof of Proposition 5. The set of households in the top at time t + τ is T ′ = (T \ (XD ∪ X )) ∪ (E ∪ ED).

Therefore, the total wealth in the top at time t+ τ can be decomposed as follows:∑
i∈T ′

wit+τ =
∑

i∈T \XD

wit+τ +
∑

i∈E∪ED

wit+τ −
∑
i∈X

wit+τ (A42)

Denote R the net wealth growth of households in the top at time t that do not die, i.e.

Rwithin =

∑
i∈T \XD wit+τ∑
i∈T \XD wit

− 1 (A43)

Equation (A42) giving the total wealth of households in the top at time t+ τ can be rewritten using rt+τ∑
i∈T ′

wit+τ = (1 +Rwithin)(
∑
i∈T

wit −
∑
i∈XD

wit) +
∑

i∈E∪ED

wit+τ −
∑
i∈X

wit+τ (A44)

Adding and subtracting qt+τ to the wealth of households that enter, exit, or die, and dividing by total wealth

at time t+ τ , one obtains∑
i∈T ′

wit+τ = (1 +Rwithin)
∑
i∈T

wit +
∑
i∈XD

(qt+τ − (1 +Rwithin)wit) +
∑
iED

(wit+τ − qt+τ )

+
∑
i∈E

(wit+τ − qt+τ ) +
∑
i∈X

(qt+τ − wit+τ ) + (|T ′| − |T |)qt+τ (A45)

Dividing by St and rearranging, one obtains the accounting decomposition (23).

I now relate this accounting decomposition to the theoretical decomposition in Proposition 3. I assume

that the panel data is a representative sample of the true underlying continuous distribution. I also consider

the model without inheritance (i.e. χ = 0) to simplify the exposition.

Integrating the law of motion (1) for household wealth wit, we get for τ > 0

E[Rwithin] = e
∫ t+τ
t

µsds − 1 (A46)

∼ µtτ as τ → 0 (A47)
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Integrating the law of motion for the top wealth share (17), we get for τ > 0

E[
St+τ
St

]− 1 = e

∫ t+τ
t

(
µs+

gs(qs)q
2
s

2Ss
ν2
s+( qspSs −1)δs+

qsp
St
ηs

)
ds
− 1 (A48)

∼ µtτ +
gt(qq)q

2
t

2St
ν2
t τ +

(
qtp

St
− 1

)
δτ +

qtp

St
ηtτ as τ → 0 (A49)

The demography term is

E[Rdemography] =
(

1− e−
∫ t+τ
t

δsds
)(qt+τp

St
− e

∫ t+τ
t

µsds

)
+ e

∫ t+τ
t

ηsdsp
qt+τ
St

(A50)

∼ (
qtp

St
− 1)δtτ +

qtp

St
ηtτ as τ → 0 (A51)

Therefore,

E[Rdisplacement] =E[
St+τ
St

]− E[Rwithin]− E[Rdemography]

=e

∫ t+τ
t

(
µs+

gs(qs)q
2
s

2Ss
ν2
s+( qspSs −1)δs+

qsp
St
ηs

)
ds
− e

∫ t+τ
t

µsds (A52)

−
(

1− e−
∫ t+τ
t

δsds
)(qt+τp

St
− e

∫ t+τ
t

µsds

)
− e

∫ t+τ
t

ηsdsp
qt+τ
St

(A53)

∼gt(qt)q
2
t

2St
ν2
t τ as τ → 0 (A54)

Therefore, the expectation of the terms in the accounting decomposition are asymptotically equivalent to

the terms in Proposition 3 as the time period τ tends to zero. In this sense, the accounting decomposition

converges to the theoretical decomposition as the time period τ tends to zero.

C Appendix for Section 4

C.1 Left Censoring

The decomposition Section 3 requires to know the wealth of households that drop out of the top percentile.

However, Forbes only reports the wealth of individuals in Forbes 400 before 2012.

First, 60% households that drop out of the top percentile actually stay in Forbes 400. Indeed, the top

percentile used in this paper is composed of only 264 households in 1983 (indeed, it was chosen so that,

with population growth, it includes 400 households in 2017). Because wealth is so concentrated in the top,

there is usually a large difference between the last individual in this top percentile and the wealth of the last

individual in the top 400. Therefore, most households that drop out of this top percentile stay in the top

400.

I now focus on the remaining 40% of households that drop off Forbes 400. Formally, the problem boils

down to estimating the average of a variable (the wealth growth of top households) that is left censored. In

this particular setting, the Kaplan and Meier (1958) estimator gives tight bounds to estimate this quantity.

The idea is to estimate this quantity using the observed big negative jumps of the top households to infer

49



the negative jumps of the households that drop off Forbes 400. The identifying assumption is that the

distribution of negative jumps is the same for households at the very top of the distribution compared to

households at the quantile.

More precisely, Kaplan and Meier (1958) insight is that the survival function, i.e. in my setting the

probability that wealth growth is lower than a certain threshold P (wt+1/wt− 1 ≤ x), can be estimated even

if the data is censored. In turn, this survival function can be used to estimate the conditional expectation of

wealth growth, given that it is lower than a certain threshold, i.e. E[wt+1/wt − 1|wt+1/wt − 1 ≤ x]. Finally,

I use this conditional expectation to impute the wealth growth of each household that drop out of the top.

I check the validity of this imputation method by focusing on years where Forbes reports the wealth

of drop-offs. Starting from 2012, Forbes systematically reports the wealth of drop-offs. In these years, I

compare the result obtained from the estimated method and the result obtained using the real wealth of

drop-offs. The results are reported in Table A5. Column (2) and (3) report the average return of these

drop-offs using the imputed method and the actual data reported by wealth. The estimates differ by only

2% in average. The fact that the Kaplan-Meier estimator gives such a good result is intuitive: because

wealth is very concentrated households at the very top of the distribution hold ten times more wealth than

the households at the margin, and therefore I do observe a large part of the distribution of downward jumps.

Column (3) reports that the total wealth owned by these imputed households represents only 2% of the

total wealth of households at the top. These imputed households represent a very small share of the total

households at the top, which suggests that noise due to imputation will have little impact on the average

wealth growth of households at the top.

Columns (4) and (5) report the estimates for Rwithin = E[wt+1/wt−1] using imputed and real data. The

estimates differ by less than 0.1%. The bias is small because, as discussed above, the Kaplan-Meier method

gives accurate estimates of the wealth growth of imputed households and that the wealth share represented

by the imputed households is small to begin with.

C.2 Measurement Error

I study the relation between the persistence of wealth growth and measurement error. Suppose the process

for wealth is given by wit+1 = wite
rit+1 where ηit is an i.i.d. process independent of wealth. Moreover,

suppose the observed wealth w̃it = wite
εit where εit is an i.i.d process independent of wealth capturing

measurement error and E[eεit ] = 1. Denote ξ the ratio between the variance of measurement error and the

variance of wealth growth, i.e.

ξ ≡ var(εit)

var(rit)
(A55)

The log change in wealth can be written

log

(
w̃it+1

w̃it

)
= rit+1 + εit+1 − εit (A56)
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A regression of wealth growth on past wealth growth estimates the slope coefficient ρ:

ρ =
cov(log(w̃it+1/w̃it), log(w̃it+1/w̃it))

var(log(w̃it+1/w̃it))

=
cov(rit+1 + εit+1 − εit, rit + εit − εit−1)

var(rit + εit − εit−1)

= − var(εit)

var(rit) + 2var(εit)

= − ξ

1 + 2ξ
(A57)

Testing whether ρ is equal to zero is a test on whether ξ is different from zero, i.e. that there is measurement

error.

The slope coefficient ρ is negative and decreasing in ξ. Moreover, for ξ close to zero, ρ can be well

approximated by the opposite of ξ, i.e. ρ ≈ −ξ.
I now examine how the derivative of the displacement term depends exactly on ρ. Even though we

cannot reject that ρ is statistically different from zero, it is important to check small values of ρ do not have

a disproportionate effect on the displacement term. I examine the bias in the displacement term in a simple

setting. I assume that εit and rit are normal variables and that the wealth distribution has a Pareto tail

with power law exponent ζ.

Since wt+1 = ert+1wt, the displacement term is given by

rdisplacement =
ζ − 1

2
V ar(ηit) (A58)

By contrast, since w̃t+1 = ert+1+εt+1−εtw̃t, the observed displacement term is

r̃displacement =
ζ − 1

2
(V ar(ηit) + 2V ar(εit)) (A59)

Therefore, the relative bias between the observed displacement term and the measured displacement term

is:

r̃displacement − rdisplacement

rdisplacement
= − 2ρ

1 + 2ρ

≈ −2ρ (A60)

In particular, when ρ is close to zero, the relative bias well approximated by a simple linear function of ρ.

Since ρ is very small, we can conclude that the relative bias is also very small.

C.3 Families

This paper follows the empirical literature on wealth inequality by using households, rather than families,

as the unit of observation. A concern is that the displacement term captures reallocation of wealth within

families, rather than reallocation of wealth across families.

To examine formally the importance of the reallocation of wealth within families, I decompose the

displacement term predicted by the diffusion model 1/2(ζ − 1)ν2 into a term due to a displacement within
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families and another term due to the displacement between families. This decomposition relies on the law

of total variance: the variance of wealth growth is the sum of the average variance within groups and the

variance between groups. Table A6 reports the annual displacement within families and between families:

the displacement within families is negligible relative to the displacement between families: it accounts for

less than 5% of the overall displacement term.

C.4 Within Term

I now examine the level and the dynamics of the within term. Overall, the within term averages 1.9%, but

is very volatile. There is no significant trend in the within term over time, as shown in Table A1.

The within term Rwithin can be approximated by the difference between the wealth growth of top house-

holds, denoted Rtop households, and the wealth growth of the economy, denoted RU.S.:

Rwithin ≈ Rtop households −RU.S. (A61)

I report both series in real terms in Table A3. The wealth growth of the overall economy is pretty stable

over time: most of the dynamics of the within term comes from an increase of Rhouseholds.

To determine the exposure of the wealth of top households to priced factors, I run regressions of their

average wealth growth on a variety of factors Table A2. Because the wealth of top households may contain

illiquid assets that are difficult to valuate, one concern is that the true volatility of wealth is higher than

the volatility reported by Forbes.46 To avoid this issue, I estimate the exposure of top households by

regressing three-year horizon wealth growth on one year factors returns. After obtaining a beta, I compute

a constant term as the average of the difference between the wealth growth of top households and the return

predicted by factor exposures. I compute the standard errors of factor exposures and of the constant terms

by bootstrapping.47.

Column (1) reports the results where the only factor is the stock market. The slope coefficient, which

reflects the exposure of top households to the stock market, is close to one. Column (2) reports the results

for the Fama-French three factor models, that adds the value factor and the size factor. The exposure to

the size factor is weakly negative, significant at 10%, which reflects the fact that households at the top tend

to own bigger firms. The exposure to the value factor is not significant. Similarly, Column (3) reports the

results for the Fama-French five factor models, that adds profitability and investment factors. Similarly, only

the exposure market is significant. Finally, in column (4), I add the excess returns of long-term bonds, as

well as excess returns corporate bonds. Similarly, only the exposure to the market is significant. Overall,

the stock market appears to be the main factor for the average wealth growth of top households. Moreover,

the exposure to the market is relatively constant around 1.0 across specifications.

46This problem is known as the “stale pricing” problem in the private equity literature, see for instance Emery

(2003).
47More precisely, I use block-bootstrap to correct for the serial correlations of the returns across time.
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I also compare the within term to a representative portfolio of industries at the top, rather than simply

the market in Column (5) of Table A2. I classify households in the Forbes 400 based on the 49 industries of

Fama-French. The industry of households in top percentiles is not representative of the market (in particular,

Real Estate, Printing and Publishing, Computer Software, and Petroleum play a more important role at the

top compared to the market). I construct a benchmark portfolio that is weights each industry similar to

the industry represented in the top. I find a similar exposure of 1 to this industry weighted portfolio. This

suggests that the exact industry composition of individuals at the top does not matter much for the growth

of top wealth shares.

I use this factor model to decompose the wealth growth of top households Rtop households into a term due

to the financial returns of top households (which can itself be decomposed into a term due to the risk free

rate and a term due to the exposure of households wealth to priced factors), a positive term due to labor

income, a negative term due to tax paid as a proportion of wealth, and a residual, i.e.:

Rtop households = Rf +
∑

1≤k≤K

βk × (Rk −Rf ) +

∑
i∈T (Labori − Taxi)

St
+ ε (A62)

where Labori denotes the labor income and Taxi the total tax paid by households i, Rf is the risk free rate

and Rk is the return of factor k ≤ K. I obtain the total tax paid and total wage income received by the top

400 individuals by income from the IRS.48 The dataset is only available after 1992, so I use the average of

this term in 1992-1995 to input it starting from 1983.

Panel A of Table A3 reports decomposition (A62) using the market return as a factor. Because labor

income and taxes are very small as a proportion of total wealth, they play a very small role in the within

term. The residual, which can be interpreted as the difference between an eventual alpha of top households

minus a consumption rate, appears to be negative, and increases over time.

To understand better what drives the increase of this residual over time, Panel B of Table A3 reports the

decomposition the industry-weighted return as a factor, instead of the market return. The industry-weighted

portfolio overweights industries that are over-represented in the top. It has particularly low returns in the

1980s, due to the poor performance of the Real Estate and Petroleum industries during this decade. After

using this industry-weighted portfolio, the residual ε appears to be constant over time, reflecting that the

industry composition of top percentiles plays a substantial role in understanding the fluctuations of the

within term.

C.5 Demography Term

I now examine the level and the dynamics of the demography term through the lens of the model presented

in Section 2. I first focus on the term due to death rdeath. According to the theoretical model, this term

equals

Rdeath =
χζ − 1

ζ
δ (A63)

48https://www.irs.gov/pub/irs-soi/13intop400.pdf.
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where ζ is the Pareto tail of the wealth distribution, δ is the death rate of households at the top, and χ

captures the extent to which deceased households are able to bequest their wealth to their offspring. If

χ = 0%, deceased households are not able to pass their wealth to their offspring. If χ = 100%, deceased

households are perfectly able to pass their wealth to their offspring. 1− χ can be interpreted as the average

estate tax paid by deceased households.

Given an estimate from ζ and δ that can be obtained from the data, one can always compute the implicit

inheritance parameter χ that explains the magnitude of the death term Rdeath using (A63). I report the

result of this decomposition in Proposition 3. I find that the inheritance parameter χ averages to 60% and

is pretty stable over time. It corresponds to an average estate tax 1− χ = 40% which is close to the actual

top marginal estate tax rate during the period.

I now focus on the term due to population growth. According to the theoretical framework in Section 2,

the term equals

Rdemography =

(
1− 1

ζ

)
η (A64)

where ζ is the Pareto tail of the wealth distribution and η is the population growth rate. I compare the

actual population growth rate to the term predicted by the model, using the estimate for ζ used in Section 4,

and the population growth rate η. I find that the two terms are very close, with a difference ε close to zero.

By definition of the population growth term in the accounting decomposition, any difference between the

population growth and the model-predicted term purely reflects the fact the ratio between the wealth at

the lower threshold to the average wealth of the population qtp/St may not be exactly equal from 1− 1/ζ,

where ζ is an estimate of the Pareto exponent. The fact that the two terms are equal reflects the fact that

the right tail of the wealth distribution is very close to Pareto.

D Appendix for Section 5

I now discuss how the law of motion of top wealth shares can also shed light on the behavior of the power

law exponent of the distribution. This exercise relates my paper to the results to Gabaix et al. (2016), that

discusses the convergence of Pareto tails after changes in wealth dynamics.

The ratio between the share of wealth owned by a top percentile compared to another top percentile is

a good proxy for the power law exponent of the distribution. Indeed, for a distribution with a Pareto tail

with power law exponent ζ, the ratio of the wealth shares of two top percentiles p and p′ is:

log

(
St(p)

St(p′)

)
=

(
1− 1

ζ

)
log

(
p

p′

)
(A65)

The dynamics of the ratio between two top wealth shares therefore captures the dynamics of the right tail

of the distribution.

I examine the case where the individual volatility depends on the wealth level, i.e.

dwit
wit

= µtdt+ νt(wit)dBit (A66)
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The law of motion of the ratio between two top wealth shares is now:

d log

(
St(p)

St(p′)

)
=

(
gt(qt(p))qt(p)

2

2St(p)
νt(qt(p))

2 − gt(qt(p
′))qt(p

′)2

2St(p′)
νt(qt(p

′))2

)
dt (A67)

At the first order, the growth of this ratio depends on two terms: the difference in the shape of the wealth dis-

tribution at percentile p and at percentile p′, but also the difference in idiosyncratic volatility for households

at the lower threshold of percentile p and those at the lower threshold of the percentile p′.

Section 5 shows that the difference in the shape of the wealth distribution between the top 1% and the

top 0.01% can only account for a 0.2% yearly difference in growth rate between the top two percentiles

((1.6 − 1.5)/2 × 0.22). In contrast, the difference in the idiosyncratic variance of wealth growth between

the top 1% and the top 0.01% can account for a 1.2% yearly difference in growth rates between the top

two percentiles (1.6 − 1)/2 × (0.252 − 0.152)). In conclusion, only differences in the idiosyncratic volatility

of households at the top of the wealth distribution 0.01% threshold, compared to households at the 1%

threshold, can generate a rapid thickening of the tail of the distribution, as discussed in Gabaix et al. (2016).

E Appendix for Section 6

Proof of Lemma 1. We can express the average time Tq(wit) by backward induction.

Tq(wit) = δ∆t× 0 + (1− δ∆t)× (∆t+ E[Tq(wit+∆t)]) (A68)

Therefore

0 = (1− δ∆t)(∆t+ E[Tq(wit+∆t)− Tq(wit)])− δ∆tTq(wit) (A69)

Taking ∆t→ 0, we obtain a forward-looking expression for Tq(wit):

0 = dt+ E[dTq(wit)]− Tq(wit)δdt (A70)

Applying Ito’s lemma, we obtain an ODE satisfied by Tq:

1 + T ′q(w)µw + T ′′q (w)
ν2w2

2
− δTq(w) = 0 (A71)

The solution has the form:

Tq(w) = c1w
ζ+ + c2w

ζ− +
1

δ
(A72)

where ζ+ and ζ− are respectively the positive and negative zero of ζ → µζ + ζ(ζ−1)
2 ν2 − δ. Note that this

function is convex, converges to infinity as ζ converges to infinity, and equals −δ in zero, therefore there are

exactly two zeros for this function, one negative, one positive.

Using the limit condition:

Tq(q) = 0 (A73)

lim
w→+∞

Tq(w) =
1

δ
(A74)
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we obtain c1 = 0 and c2 = −1/(δqζ−), therefore

Tq(w) =
1

δ

(
1−

(
w

q

)ζ−)
(A75)

The average first passage time Tq(w) for the case δ = 0 can be obtained by taking the limit as δ → 0.49

Tq(w) =
1

ν2/2− µ
log

w

q
(A76)

Since ζ− → 0, both the numerator and the denominator in the expression for Tq(w) tend to zero. We can

obtain the limit of Tq(w) when using l’Hôpital rule:

lim
δ→0

Tq(w) = −∂ζ−
∂δ

(δ = 0) log
w

q
(A77)

Using the implicit function theorem to compute the derivative of ζ− with respect to δ, we obtain

lim
δ→0

Tq(w) =
1

ν2/2− µ
log

w

q
(A78)

The average time before exit Tq(w) increases in µ and decrease in ν2. By the definition of ζ+ and ζ− as

the implicit function theorem, we have ∂ζ−
∂µ ≤ 0 and ∂ζ−

∂ν2 ≥ 0. Therefore, given a distance to the quantile

w/q, an increase in µ increases the average time before exit Tq(w). Similarly, an increase in ν2 decreases the

average time before exit Tq(w).

The average time before exit Tq(w) decreases in δ. The comparative statics of Tq(w) with respect to δ

is a little bit harder to prove, since δ appears directly in the formula, as well as through ζ−. The derivative

of T with respect to δ is:

∂Tq(w)

∂δ
= − 1

δ2

(
1−

(
w

q

)ζ− (
1− δ ∂ζ−

∂δ
log

(
w

q

)))
(A79)

This derivative has the same sign as the function

f : δ → 1−
(
w

q

)ζ− (
1− δ ∂ζ−

∂δ
log

(
w

q

))
(A80)

The function is nonnegative when δ tends to 0, and tends to +∞ when δ tends to +∞. Its derivative with

respect to δ is

∂f

∂δ
=

(
w

q

)ζ−
log

(
w

q

)
δ

((
∂ζ−
∂δ

)2

log
w

q
+
∂2ζ−
∂δ2

)
(A81)

which is always positive since ζ− is a convex function of δ by the implicit function theorem. We conclude

that f is nonnegative and therefore Tq(w) is decreasing in δ.

49This is assuming that ν2/2− µ = E[d log(w)]
dt

> 0. Otherwise, the average passage time is infinite.
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Proof of Proposition 6. When δ 6= 0, the average time is

T (p) = Eg[Tq(wit)|wit ≥ q]

=

∫ +∞
q

Tq(w)g(w)dw∫ +∞
q

g(w)dw

=
1

δ

(
1−

∫ +∞
q

(w/q)ζ−w−ζ+−1dw∫ +∞
q

w−ζ+−1dw

)

=
1

δ

1− 1

qζ−

qζ−−ζ+

ζ+−ζ−
q−ζ+

ζ+


=

1

δ

1

1− ζ+/ζ−
(A82)

The derivative with respect to idiosyncratic variance ν2 is

∂T

∂ν2
=

1

δ

1

(1− ζ+/ζ−)2

∂(ζ+/ζ−)

∂ν2

=
1

δ

1

(1− ζ+/ζ−)2

ζ+
−ζ−

(
1

ζ−

∂ζ−
∂ν2
− 1

ζ+

∂ζ+
∂ν2

)
(A83)

As ν2 increases, T (p) decreases only if the percentage decrease of ζ− is higher than the percentage decrease

of ζ+.

In the case χ = 0 and n = 0, using the implicit function theorem, we have

1

ζ−

∂ζ−
∂ν2

= − (ζ− − 1)/2

µ+ (ζ− − 1
2 )ν2

(A84)

1

ζ+

∂ζ+
∂ν2

= − (ζ+ − 1)/2

µ+ (ζ+ − 1
2 )ν2

(A85)

Therefore

1

ζ−

∂ζ−
∂ν2
− 1

ζ+

∂ζ+
∂ν2

=
(ζ+ − ζ−)(µ+ 1

2ν
2)

2(µ+ (ζ− − 1
2 )ν2)(µ+ (ζ+ − 1

2 )ν2)
(A86)

The denominator is always negative. The numerator is positive if and only if µ + 1
2ν

2 ≥ 0. In this case,

1
ζ−

∂ζ−
∂ν2 − 1

ζ+

∂ζ+
∂ν2 ≤ 0 and therefore T decreases in ν2. Conversely, if µ ≤ −ν2/2, T increases in ν2.
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Table A1: Trends in the Decomposition of the Growth of Top Wealth Share

Dependent Variable

Rtotal (%) Rwithin (%) Rdisplacement (%) Rdemography (%)

(1) (2) (3) (4)

Panel A: Period Dummies

Constant 4.23∗∗ 1.44 2.94∗∗∗ −0.07

(2.04) (1.75) (0.51) (0.23)

Dummy1994≤year≤2004 −0.55 0.15 −0.47 −0.25

(5.10) (4.81) (0.65) (0.31)

Dummy2005≤year≤2016 −0.61 1.24 −1.51∗∗∗ −0.40

(2.53) (2.24) (0.55) (0.25)

R2 0.00 0.00 0.21 0.07

Period 1983-2016 1983-2016 1983-2016 1983-2016

N 34 34 34 34

Panel B: Linear Year Trend

Constant 0.04∗∗ 0.02 0.02∗∗∗ 0.00∗∗∗

(0.02) (0.02) (0.00) (0.00)

Year† 0.00 0.00 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00) (0.00) (0.00)

R2 0.02 0.00 0.25 0.13

Period 1983-2016 1983-2016 1983-2016 1983-2016

N 34 34 34 34

† The variable Year is demeaned so that the intercept of the regression corresponds to the average of the dependent variable.

Notes. Panel A regresses the terms in the accounting decomposition on period dummies. Panel B regresses the terms in the

accounting decomposition in (23) on year trends.

Estimation via OLS. Standard errors in parentheses and estimated using Newey-West with 3 lags. ∗,∗∗,∗∗∗ indicate significance

at the 0.1, 0.05, 0.01 levels, respectively. Data from Forbes 400.
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Table A2: Factor Model

Rtop households −Rf

Market FF 3-factors FF 5-factors Bond Factors Industry

(1) (2) (3) (4) (5)

market 0.97∗∗∗ 1.08∗∗∗ 0.98∗∗∗ 0.98∗∗∗

(0.26) (0.27) (0.29) (0.26)

smb −0.88∗ −0.84∗

(0.51) (0.50)

hml 0.32 0.61

(0.36) (0.54)

cma −0.76

(0.68)

rmw −0.05

(0.46)

ltg 0.44

(0.55)

crd −0.03

(0.61)

industry 1.01∗∗∗

(0.26)

Constant −0.03 −0.05 −0.02 −0.06 −0.03∗

(0.06) (0.06) (0.07) (0.06) (0.06)

R2 0.31 0.39 0.42 0.33 0.34

Period 1983-2016 1983-2016 1983-2016 1983-2016 1983-2016

N 32 32 32 32 32

Notes. The table reports the results of regressing of the wealth growth of top households on excess stock market returns, and

a set of other factors. The left hand side is the three year excess wealth growth of top households, to allow for circumvent the

stale pricing model of holdings outside private equity. More precisely, denote Rtop, t the average wealth growth of top at time

t, I report the coefficients βi obtained when estimating the linear model

(1 +Rtop,t)(1 +Rtop,t+1)(1 +Rtop,t+2)− (1 +Rft)
3 = α+

∑
1≤i≤f

βi(Rit −Rft) + ε

Portfolio returns of Fama-French factor models, as well as industry portfolios, are from the Fama-French Data Library. Corporate

bond returns are obtained from Ibbotson’s Stocks, Bonds, Bills and Inflation Yearbook.

Estimation via OLS. Standard errors in parentheses and estimated using Newey-West with 3 lags. ∗,∗∗,∗∗∗ indicate significance

at the 0.1, 0.05, 0.01 levels, respectively.
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Table A3: Decomposing the Within Term

Year Rwithin

Total (%) Rtop households (%) −RU.S.(%)

Total Rf βM (RM −Rf ) Labor-Tax ε

Panel A: RM is Market Return

All Years 1.9 5.8 1.6 6.5 −0.8 −1.6 −4.0

1983-1993 1.5 5.0 3.7 5.5 −0.8 −3.4 −3.5

1994-2004 1.6 7.4 2.0 6.8 −0.7 −0.7 −5.9

2005-2016 2.7 5.1 −0.6 7.3 −0.8 −0.7 −2.8

Panel B: RM is Industry-Weighted Return

All Years 1.8 5.6 1.6 6.5 −0.8 −3.0 −4.0

1983-1993 1.5 5.0 3.7 3.9 −0.8 −1.8 −3.5

1994-2004 1.6 7.4 2.0 7.3 −0.7 −1.1 −5.9

2005-2016 2.7 5.1 −0.6 7.5 −0.8 −0.9 −2.8

Notes. The table reports the decomposition of the within term Rwithin according to the theoretical model (A61) and (A62),

using RM as a benchmark return. In Panel A, the benchmark return is the (value-weighted) market return. In Panel B, the

benchmark return is the industry-weighted return, using the industry composition of households in the top percentile. All

returns in real terms. Data for the risk free rate Rf and market returns come from Fama-French Data Library. Industries are

defined using the Fama-French 49 industry classification. Data from Forbes 400.

Table A4: Decomposing the Demography Term

Year Rdemography

Total (%) Rdeath = χζ−1
ζ δ Rpop. growth =

(
1− 1

ζ

)
η + ε

Total (%) ζ δ (%) χ (%) Total (%) ζ η (%) ε (%)

All Years −0.3 −0.7 1.5 1.8 54 0.4 1.5 1.2 0.0

1983-1993 −0.1 −0.7 1.8 1.9 60 0.6 1.8 1.3 0.0

1994-2004 −0.3 −0.8 1.4 1.9 56 0.4 1.4 1.4 0.0

2005-2016 −0.5 −0.7 1.4 1.6 46 0.3 1.4 0.9 0.0

Notes. The table reports the decomposition of the demography term Rdemography according to the theoretical model (18).

The death rate δ corresponds to the yearly death rate of households in the top percentile. The population growth rate η

corresponds to the yearly growth of the U.S. population. The power law exponent is estimated using ζ−1 = gt(qt)q2t /St, where

the density gt(qt) is estimated from the mass of households with a wealth 30% higher or lower than qt.
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Table A5: Comparison Method using Imputed Wealth of Drop-offs vs Reported Wealth

Year E
[
wt+1

wt
− 1|Drop-off

]
(%) Wealth Share Drop-offs (%) E

[
wt+1

wt
− 1
]

(%)

Imputed Actual Imputed Actual

2011 −23.2 −37.1 1.6 7.7 7.5

2012 −28.0 −30.6 1.8 7.0 6.9

2013 −39.7 −19.9 1.7 1.8 2.1

2014 −32.9 −31.0 2.2 −3.2 −3.2

2015 −42.3 −50.8 3.1 2.6 2.4

2016 −41.7 −19.4 2.2 1.1 1.6

2011-2016 −34.6 −31.5 2.1 2.8 2.9

Notes. The table compares the estimate for the within term Rwithin obtained using imputed data compared to the wealth of

drop-offs reported after 2011. The difference in Rwithin between the two methods is reported in Column (7). It can be obtained

as the product of the difference in the estimate of the return of drop-offs in Column (3) times the share of wealth represented

by drop-offs in Column (4).

Table A6: Wealth Reallocation Within Families

Year Rdisplacement

Total (%) Displacement Predicted by Variance 1/2(ζ − 1)ν2 (%) ε (%)

Total Within Families Between Families

All Years 2.3 2.0 0.1 1.9 0.3

1983-1993 3.0 2.9 0.2 2.8 0.0

1994-2004 2.5 1.9 0.1 1.8 0.6

2005-2016 1.4 1.2 0.0 1.2 0.2

Notes. The table decomposes the model-predicted displacement term 1/2(ζ − 1)ν2 into a displacement “within” families

1/2(ζ − 1)ν2within and a displacement “between” families 1/2(ζ − 1)ν2between. The decomposition follows from the law of total

variance: the variance of wealth growth ν2 is the sum of the average variance within groups ν2within and the variance between

groups ν2between. Data from Forbes 400.
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